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Structure Shapes the Representation of a Novel Category
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Concepts contain rich structures that support flexible semantic cognition. These structures can be character-
ized by patterns of feature covariation: Certain features tend to cluster in the same items (e.g., feathers,
wings, can fly). Existing computational models demonstrate how this kind of structure can be leveraged
to slowly learn the distinctions between categories, on developmental timescales. However, it is not clear
whether and how we leverage feature structure to quickly learn a novel category. We thus investigated
how the internal structure of a new category is first extracted from experience, with the prediction that
feature-based structure would have a rapid and broad influence on the learned category representation.
Across three experiments, novel categories were designed with patterns of feature associations determined
by carefully constructed graph structures, with Modular graphs—exhibiting strong clusters of feature covari-
ation—compared against Random and Lattice graphs. In Experiment 1, a feature inference task using verbal
stimuli revealed that Modular structure broadly facilitated category learning. Experiment 2 replicated this
effect in visual categories. In Experiment 3, a statistical learning paradigm revealed that this Modular benefit
relates to high-level structure rather than pairwise feature associations and persists even when category struc-
ture is incidental to the task. A neural network model was readily able to account for these effects, suggesting
that correlational feature structure may be encoded within rapidly learned, distributed category representa-
tions. These findings constrain theories of category representation and link theories of category learning with
structure learning more broadly.
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Mental representations are only useful insofar as they capture the
content and structure of the environment. Structure—the organiza-
tion of relations among units in a system—can reflect different
kinds of relations in different domains. For example, structure within
the visual domain may reflect co-occurrences of visual features
across scenes, spatial structure may reflect the physical relationships
between various landmarks, and semantic structure may reflect the
pattern of semantic feature associations on multiple conceptual
scales. Recently, in part inspired by the idea of “cognitive maps”
(Tolman, 1948), researchers have sought to understand the forma-
tion of structural representations and their influence on human cog-
nition. Here we focus on the semantic domain, and the feature-based
structure that underlies concepts and categories. Our approach is to
synthesize ideas from structure learning and category learning to
investigate the nature of structured category representations.

We use the term concept to reflect the internal representation of a
category, which is a set of ideas or items in the external world
(Komatsu, 1992; Rips et al., 2012; K. O. Solomon et al., 1999).
Research on concepts typically focuses on the rich, mature represen-
tations humans already carry with them around the world (e.g.,
FIREFLY, ROSE, TRUTH). On the other hand, research on category
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learning typically focuses on newly constructed categories defined
by abstract perceptual stimuli (e.g., visual shapes, auditory tones)
or simplified figures (e.g., cartoon animals, line drawings), lacking
the richness in structure that eventually supports our mature concept
representations. Here we attempt to bridge these two literatures to
target fundamental questions of concept representation—when a
new category is learned, how do the initially formed representations
lead to the rich, structured concepts that compose semantic memory?

Structure Within and Between Concepts

A feature-based view of concepts enables us to link theories of
semantic knowledge with those of novel category learning. While
this empiricist tradition is widely adopted, there are also dissenting
views. For example, proponents of the “theory theory” of concepts
argue that concepts are not primarily collections of features, but
rather abstract knowledge structures that contain explanations, coun-
terfactuals, causal relations, predictions, and rules (e.g., Ahn & Kim,
2000; Carey, 1985; Gopnik, 1988; Keil, 1992). Nevertheless,
feature-based approaches to conceptual knowledge give us traction
in understanding the human semantic system. Our present goal is
to examine whether and how structure in the semantic environment
becomes embedded within our semantic representations.

Structure within the semantic domain can explain various aspects
of semantic cognition, including the developmental trajectory
of semantic learning (Rogers & McClelland, 2004; Unger et al.,
2020) and human performance on conceptual tasks such as property
verification and similarity judgments (Cree et al., 1999; McRae et al.,
1997, 1999; Rosch, 1975; Tyler et al., 2000). Classic studies suggest
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that concepts are not represented as collections of independent
features, but as the “web of relationships in which these properties par-
ticipate” (Medin et al., 1987). For example, one study found that par-
ticipants considered material and size dimensions to be correlated
within the spooN concept: Wooden spoons are typically large, and
metal spoons are typically small (Medin & Shoben, 1988). This
was interpreted to suggest that semantic features are not independent
but are structured via associative relations. Classic empirical findings
on the interpretation of combined concepts (e.g., METAL ROSE) are often
used to support the claim that concepts contain structured sets of fea-
tures and/or relations (Sloman et al., 1998; Wisniewski & Gentner,
1991). The structure of individual concepts also appears to have con-
sequences for how those concepts are flexibly used in language. For
example, in recent work we found evidence that the feature-based
structure of a concept predicts its semantic variability as measured
within language corpora (S. H. Solomon et al., 2019).

Correlational feature structure plays an important role in compu-
tational models of concept learning and representation. Feature asso-
ciations can explain why people consider certain kinds of features
(i.e., functional vs. perceptual) as more important for some concepts
versus others (i.e., artifacts vs. living things; Tyler et al., 2000; Tyler
& Moss, 2001) and can predict performance on property verification,
similarity judgment, and typicality judgment tasks (Cree et al., 1999;
McRae et al., 1997, 1999). These models of real-world concepts,
among others, were inspired by the seminal McClelland and
Rumelhart’s (1985) neural network models of semantic learning.
Neural network models capitalize on semantic feature correlations
to learn and represent category information. For example, Rogers
and McClelland (2004) demonstrate that the structure of the seman-
tic environment—that is, patterns of semantic feature co-occurrences
across items—can be used by neural network models to learn hier-
archical semantic relationships. The models build representations
that differentiate superordinate categories (e.g., ANIMALS VS.
PLANTS), basic-level categories (e.g., FLOWER vs. TREE), and individual
items (e.g., ROSE VS. PINE TREE) in a manner that accounts for patterns
of semantic cognition in humans: for example, the order in which
concepts are learnt, the special status of basic level concepts, and
the acquisition and deterioration of semantic knowledge observed
in infants and dementia patients (Rogers & McClelland, 2004).

An important principle underlying the success of the models is that
they leverage “coherent covariation” among clusters of features to
build internal representations that capture the structure of the semantic
environment (Cree et al., 1999; McClelland & Rogers, 2003; Rogers
& McClelland, 2004; Saxe et al., 2019). Coherent covariation refers to
the tendency of features to co-occur across different semantic items.
For example, the presence of feathers and wings and the capability
of flight are features that tend to co-occur, facilitating the formation
of a BIRD concept. Neural network models represent these feature asso-
ciations via the fine-tuning of weights during learning. By the end of
learning, the model has integrated information across items such that
the model’s weights store patterns of feature associations rather than
storing traces of the individual items that were observed. In other
words, semantic structure is encoded directly in the neural network
model’s learned representation.

Internal Structure of Novel Categories

Categories (and concepts) do much more than categorize. Once
we have classified an item as belonging to some category or another,

we use relevant category information to make inferences about its
other features, predict its behaviors or uses, and communicate with
others. Feature inferences rely on an understanding of a category’s
structure, that is, on feature frequencies and correlations. Imagine
that, on a hike through a rainforest, you find two creatures and clas-
sify one as a frog and the other as a bird. Based on what you know
about frogs, you infer that it would feel slimy to the touch and
because it is brightly colored you also infer that it is potentially poi-
sonous. Based on what you know about birds, you infer that this one
is lightweight and because it is covered in a grey fuzz you also infer
that it is young and therefore that its mother is likely nearby.

Categories can be learned in either classification or inference
tasks, and evidence suggests that these different learning conditions
result in different category representations. In a classification task,
participants learn to associate exemplars with the correct category
label. In an inference task, participants are shown exemplars with
one feature missing and learn to select the identity of the missing fea-
ture. Whereas classification tasks encourage people to learn and rep-
resent the diagnostic features for each category, inference tasks
encourage people to focus on within-category information and con-
sequently to learn a category’s internal structure (Anderson et al.,
2002; Chin-Parker & Ross, 2002; Lassaline & Murphy, 1996;
Markman & Ross, 2003; Rehder & Ross, 2001). Thus, different
learning tasks can result in different learning patterns and learned
representations; traditional models of category learning that are
trained on categorization tasks perform poorly on subsequent infer-
ence tasks (Markman & Ross, 2003; Yamauchi & Markman, 1998).
In contrast, neural network models of semantic learning (Rogers &
McClelland, 2004; Rumelhart, 1990) were developed to explain
feature-based inference, rendering them especially useful in the
study of internal category structure.

In studies that contrast classification with inference learning, mul-
tiple categories are employed (there must at least be two categories to
test classification decisions). However, feature inference is distinct
from classification—after an item has been categorized as belonging
to a certain category, the internal structure of that category can then
guide feature inference. For this reason, studies investigating feature
inference and feature correlations often do not include classification
tasks and sometimes participants are only exposed to one category
during learning (Franks & Bransford, 1971; Medin et al., 1982;
Neumann, 1974; Wattenmaker, 1991, 1993).

Humans are sensitive to feature correlations in novel category learn-
ing tasks. Medin et al. (1982) exposed participants to a novel disease
category in which patients presented with correlated symptoms. In a
following transfer test, the study participants were more likely to diag-
nose a new patient with the disease if correlated symptoms were pre-
sent, even if those symptoms were less characteristic of the disease
overall. In another series of experiments, Wattenmaker (1991, 1993)
created categories of hypothetical people in which several pairs of
social characteristics were perfectly correlated. Across a range of dif-
ferent learning conditions, behavior at test revealed knowledge of
category-specific feature correlations. Sensitivity was observed for
pairs as well as triplets of correlated features, when feature correlations
were pitted against feature frequencies, when only one category was
presented, and in both intentional and incidental learning conditions.
Hayes et al. (1996) further suggest that prior knowledge boosts sensi-
tivity to feature correlations. These results provide strong evidence
that humans are sensitive to both feature frequencies and feature cor-
relations during category learning.
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Embedding Structure in Models of Category Learning

Feature-based structure thus appears to influence category learn-
ing and a variety of conceptual judgments. This has interesting
implications for theories of semantic representation—are feature
correlations directly embedded within category representations, or
are they inferred during retrieval processes? To explore this question,
we can consider different theories of category representation.
Broadly speaking, there are two primary classes of category models:
exemplar models and abstraction models (Barsalou, 1990). Both
classes of models are powerful and can, in principle, contain the
same kinds of semantic information. The crucial difference between
these models is not what information is stored, but #ow the informa-
tion is stored.

Exemplar models store traces of observed exemplars as distinct
items in memory. These exemplar traces exhibit information duplica-
tion (the same feature appears multiple times across stored exemplars)
and, typically, no information revision (exemplar representations are
not updated as new information becomes available). The context the-
ory of classification learning (Medin & Schaffer, 1978) and the asso-
ciated generalized context model (GCM; Nosofsky, 1986, 2011) are
classic examples of this view. Exemplar models have had significant
success in predicting behavioral patterns of category learning (e.g.,
Hintzman, 1984; Medin & Schaffer, 1978; Nosofsky, 1984, 1986;
Nosofsky et al., 1992, 2018) as well as neural responses during cate-
gory learning (Mack et al., 2013).

Abstraction models, on the other hand, integrate information
across exemplars into a centralized category representation.
Information revision is intrinsic to these models, and there is no
information duplication. Prototype models are classic examples of
abstraction models, with centralized category representations that
contain information about distinct category features (Rosch, 1973;
Rosch & Mervis, 1975). There are many variations of “prototype”
style models—for example, modal prototype models represent the
category’s most frequent features, whereas average distance models
represent the average feature values across exemplars. In all cases,
exemplar information is integrated to form a centralized representa-
tion of feature frequencies or probabilities, and the individual exem-
plar traces are discarded. Prototypes can explain the fuzziness of
category boundaries (Hampton, 1979) and can predict a wide
range of category judgments and categorization phenomena
(Rosch, 1973; Rosch & Mervis, 1975). Models instantiating proto-
type theory have also had success in predicting human categoriza-
tion performance (Bowman et al., 2020; Devraj et al., 2021; Smith
& Minda, 1998, 2002). It has been argued that prototype- as well
as exemplar-based representations emerge in the brain during cate-
gory learning (Bowman et al., 2020).

How do exemplar and abstraction models stack up in their ability
to explain human sensitivity to feature correlations? If the class of
abstraction models is reduced to the well-known prototype models,
exemplar-based theories are unequivocally supported (Medin et
al., 1982; Wattenmaker, 1991). Neither exemplar nor prototype
models directly represent feature correlations, but while feature
co-occurrences can be extracted from exemplar representations at
retrieval, this information is lost in prototype models. However,
the class of abstraction models extends beyond classic “prototypes”
and some models do represent feature co-occurrences in addition
to, or instead of, feature frequencies (Gluck & Bower, 1988;
Hayes-Roth & Hayes-Roth, 1977; Neumann, 1974; Reitman &

Bower, 1973). For example, the “configural cue” model is a simple
one-layer network in which the powerset of a category’s features is
represented as localist input nodes (Gluck & Bower, 1988). We will
refer to this class of models, in which information is abstracted
away from exemplars and feature associations are encoded, as
“relational abstraction” models (Barsalou, 1990).

Relational abstraction theories that posit localist representations
of feature associations are criticized as implausible, given that a
category’s powerset exponentially increases in size as each new
feature is added. However, neural network models of semantic
learning can also be characterized as relational abstraction
models and use distributed, instead of localist, representations
(McClelland & Rogers, 2003; McClelland & Rumelhart, 1985;
Rogers & McClelland, 2004). Neural network models can repre-
sent pairwise feature associations as well as larger feature clusters
and thus are promising models in the investigation of category
structure representations. Various network models have been
used to account for category learning in humans that make different
representational and processing assumptions (“adaptive network
model,” Gluck & Bower, 1988; “ALCOVE,” Kruschke, 1992;
“SUSTAIN,” Love et al., 2004; “DIVA,” Kurtz, 2007). Here, our
arguments are based on neural network models such as
McClelland and Rumelhart (1985) and Kurtz (2007), which are
multilayer networks with fixed architectures that receive semantic
feature information as inputs. In the context of feature correlation
learning, these network characteristics are crucial—a learning pro-
cess fine-tunes the weights between the input/output and hidden
layers, such that feature associations are stored.

The range of exemplar and abstraction representation models is
vast, and because they can be paired with a wide range of processing
assumptions, it is hard to empirically support one theory of rep-
resentation over the other (Barsalou, 1990). It is clear that humans
are sensitive to feature frequencies and can develop category repre-
sentations that include feature co-occurrence information. However,
sensitivity to feature correlations could be explained by processes
that occur at either encoding or retrieval. It could be that abstraction
occurs during encoding, such that feature correlations are stored
within the category representation, but it is also possible that only
exemplar traces are stored during encoding and postencoding pro-
cesses applied to these traces at retrieval result in the extraction of
feature co-occurrence information. Some researchers have attempted
to make claims regarding category representation by manipulating
the learning task to focus on category-level or item-level information
(e.g., intentional vs. incidental encoding; Hayes et al., 1996;
Wattenmaker, 1991, 1993). For example, based on Wattenmaker’s
(1991) finding that incidental learners were more sensitive to feature
correlations than intentional learners, he concluded that feature cor-
relations are extracted from item-level representations at retrieval
rather than encoded as abstracted rules. Other researchers have
argued for exemplar-style category representations based on find-
ings that exemplar models can explain human category learning
behavior better than prototype models (e.g., Medin & Schaffer,
1978). However, the dismissal of prototype models should not result
in the dismissal of all abstraction models. Indeed, these researchers
often concede that abstraction models that store feature correlations
or relations would be able to explain the findings (“In fact, most of
the qualitative predictions of the context model examined in the pre-
sent experiments are shared by relational frequency models”; Medin
& Schaffer, 1978).
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We propose a relational abstraction model of category representa-
tion in which feature correlations are stored within a distributed sys-
tem. This model can be instantiated in a multilayer neural network
model—when features are represented on the input layer, a learning
process fine-tunes the weights between input/output and hidden
layers such that useful feature associations are stored. This is an
abstraction model because exemplar information is integrated during
learning, and is relational because feature correlations are encoded.
Our experiments aim to test how well a neural network, relational
abstraction model of category learning can explain patterns of
human category learning behavior.

Learning Categories Within a Distributed System

Multilayer neural network models rely on distributed representa-
tions, in which units are responsive to many related features of the
environment, to learn and represent information. We hypothesize
that learning categories within a distributed representational system
can lead to structured category representations containing meaning-
ful feature associations. This kind of representation crucially con-
tributes to the successful semantic development observed in neural
network models, though (a) the structures learned by existing models
are within and across larger semantic domains (e.g., ANIMALS,
PLANTS) as opposed to within items (e.g., RosE; c.f., McClelland &
Rumelhart, 1985) and (b) the semantic learning simulated in the
models is presumed to occur over longer time scales (e.g., years of
development in infants). Here we aim to extend the principles of
these prior models to examine whether internal category structure
influences how categories are quickly learned and later used.

We will use neural network model simulations to explore how dis-
tributed representations can support the rapid initial learning of
novel category structure. Though our neural network model is a
learning model, our goal is not to propose a theoretical model of
particular learning mechanisms and our hypotheses are not related
to learning dynamics. Rather, we use the model as a tool for
demonstrating how internal category structure emerges rapidly in a
distributed representational system. When we refer to distributed
representations, we mean distributed representations that have
emerged to represent the structure and content of the input environ-
ment, as opposed to distributed representations of the individual
inputs themselves.

According to complementary learning systems (CLS) theory,
experiences are first encoded as sparse, nonoverlapping representa-
tions in the hippocampus, and only during subsequent consolidation
are they integrated into distributed representations in cortex
(McClelland et al., 1995). However, our recent computational
model of the hippocampus argues that distributed representations
quickly emerge in subfield CA1, separate from the sparse represen-
tations of Dentate Gyrus and CA3 (Schapiro et al., 2017). We have
also shown that the hippocampus is sensitive to overlapping associ-
ations and higher-level structure in the environment (Schapiro et al.,
2016). This prior work leads us to predict that distributed represen-
tations may rapidly develop during initial encounters with a rich cat-
egory structure.

Our approach will also enable us to test whether the same princi-
ples that govern learning of broad semantic domains also govern
learning of individual categories. If leveraging coherent covariation
of semantic features facilitates the formation of representations of
semantic categories, it seems likely that coherent covariation of

features within a category might similarly benefit learning. In a cat-
egory with clusters of reliably covarying features, it might be rela-
tively easier to learn the features that are most important for that
category, or there may be additional benefits such as improved cat-
egory generalization (Bowman & Zeithamova, 2021). We already
know that humans are sensitive to the statistical structure found
within many cognitive domains, as discussed below. An open ques-
tion is whether the feature-based structure of a category influences
learning and category use more broadly, and further whether specific
structures benefit or interfere with category learning and the building
of useful category representations.

Structure Learning Across Cognitive Domains

Structure can manifest in many ways. It can be operationalized in
terms of statistical co-occurrences, transitional probabilities, and
physical proximities, among others. Structure learning in the context
of novel categories was classically construed in terms of hypothesis
testing and logical rule formation (Martin & Caramazza, 1980;
Nosofsky et al., 1994; Ward & Scott, 1987). In terms of internal cat-
egory structure, participants were presumed to form hypotheses
regarding which category features co-occurred (Wattenmaker,
1991, 1993). However, decades of research on statistical learning
(SL) has revealed that structure can be learned implicitly without
the use of explicit hypotheses or rules. Some of the earliest empirical
evidence that humans are sensitive to statistical structure was pro-
vided in the domain of language development. Saffran et al.
(1996) reported that after brief exposure to a stream of nonsense syl-
lables, infants were able to learn the pseudoword boundaries based
solely on the temporal contingencies between syllables. This SL
phenomenon has been reported across many domains (Frost et al.,
2019). We will explore the idea that internal category structure
might be learned implicitly through similar mechanisms.

Humans are sensitive to higher-level structure that goes beyond
pairwise statistics. Researchers often describe high-level temporal
structure in terms of graphs, or networks (Karuza et al., 2016;
Lynn & Bassett, 2020). Graph nodes correspond to different stimuli,
and the edges between nodes specify possible transitions between
stimuli. Within an experiment, the topography of the graph is care-
fully designed in order to target elements of the learning process.
A network topography that is often used in these experiments con-
tains clusters of nodes, or “communities,” such that the stimuli
within a community tend to occur within close temporal proximity
(Kahn et al., 2018; Kakaei et al., 2021; Karuza et al., 2017, 2019;
Lynn et al., 2020; Mark et al., 2020; Pudhiyidath et al., 2020;
Schapiro et al., 2013, 2016). The extent to which networks or graphs
contain these communities is quantified in terms of “modularity”—
networks with denser clusters of nodes exhibit higher modularity
(Rubinov & Sporns, 2011). Behavioral performance on SL tasks
reveals that humans are sensitive to community structure underlying
visual (Kakaei et al., 2021; Schapiro et al., 2013), motor (Kahn et al.,
2018), and navigational (Mark et al., 2020) tasks. It has been argued
that modular structure leads to more accurate representations of a net-
work (Lynn & Bassett, 2020).

While structure learning has been witnessed across many
cognitive domains—including language, visual perception, motor
actions, and navigation—structure learning paradigms have not
yet been applied to novel category learning. When a category is
modeled as a graph containing features and feature associations
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(S. H. Solomon et al., 2019), modular structure describes coherent
covariation across features. That is, a modular “community”
would, in this case, reflect a set of features that tend to co-occur
with high probability across exemplars. Within a community, fea-
tures have a tendency to co-occur but may not be perfectly corre-
lated. This kind of structure is more naturalistic than the perfectly
correlated feature pairs used in previous category learning designs
(e.g., Hayes et al., 1996; Medin et al., 1982; Wattenmaker, 1991).
Importantly, this model of category representation differs consider-
ably from prototype and family resemblance models, neither of
which capture feature co-occurrences. A prototype contains one
set of category-diagnostic features, and its primary goal is to differ-
entiate one category from another (Rosch & Mervis, 1975); family
resemblance models similarly represent a category in terms of non-
necessary features that may be shared in any combination across cat-
egory members (Wittgenstein, 2010). Conversely, a graph-based
model can contain multiple feature communities and its primary
goal is to describe within-category variance. It is not the presence
of individual features that is diagnostic, but rather their patterns of
co-occurrence. This approach will reveal aspects of category and
concept learning specifically, but also will inform theories and mod-
els of structure learning more broadly.

Overview of Experiments

We aimed to synthesize structure learning and category learning
paradigms to examine how structured categories may give rise to
structured representations. Evidence that structured category repre-
sentations are rapidly built during learning would forge a link
between novel category representations and the rich representations
known to underlie established concepts. In order to address these
questions, we developed a paradigm distinct from traditional cate-
gory learning paradigms. In a series of behavioral experiments,
human participants learned novel animal categories whose feature
association statistics were determined by carefully manipulated
underlying graph structures. We specifically compared a Modular
graph structure like the ones described above—containing clusters
of covarying features—with two non-Modular structures (i.e.,
Random, Lattice). Within each novel category, the specific features
assigned to the graph nodes were randomized for each participant in
order to isolate the effects of the category structure and eliminate any
bias due to prior knowledge of feature correlations (e.g., Hayes et al.,
1996). We also ran simulations of a neural network model to test
whether a relational abstraction model of category learning—in
which feature associations are encoded into the learned representa-
tion—can explain patterns of human category learning.

An important aspect of our design is that all categories contained
an identically structured set of three high-frequency “core” features.
That is, while the “peripheral” structures differed—resulting in
Modular, Random, and Lattice categories—the core structure across
all categories was identical. We examined participants’ ability to
learn each category’s core features in order to assess the general
influence of category structure on category learning. Experiments
1 and 2 employed a classic missing feature inference task, whereas
Experiment 3 was inspired by more recent SL designs. In all
cases, we compared core feature learning across Modular and
non-Modular categories.

We predicted that humans would be able to learn the feature-based
category structures, based on previous research in the category

learning domain suggesting that humans can learn pairs or triplets
of correlated features (Hayes et al., 1996; Medin et al., 1982;
Wattenmaker, 1991, 1993). More importantly, we predicted that
the specific structure of a category (i.e., Modular vs. non-Modular)
would influence the ease with which that category is learned.
Previous research in the structure learning domain suggests that
modularity within a structure, or clusters of reliably co-occurring
information, benefits learning (Lynn & Bassett, 2020; Rogers &
McClelland, 2004). If the mechanisms involved in learning an indi-
vidual category parallel those involved in structure learning more
broadly, we would expect increased performance on Modular cate-
gories relative to Random and Lattice categories. That is, we pre-
dicted that increased feature clustering among the Modular
category’s peripheral features would improve participants’ ability
to detect the high-frequency core features. Further, we predicted
that a neural network model—instantiating a relational abstraction
model of category learning—would also reveal this influence of
internal category structure since it is designed to encode feature cor-
relations and is especially attuned to coherent covariation among fea-
tures (Rogers & McClelland, 2004).

We tested these predictions across three experiments, examining
human behavior and model simulations. In Experiment 1, we
designed two novel animal categories defined by lists of verbal fea-
tures whose co-occurrence statistics were dictated by a Modular or
Random graph structure. Since our empirical questions relate to inter-
nal category structure as opposed to category distinctions, we exposed
participants to the two categories in a missing feature task, an inferen-
tial task that promotes within category comparisons (Anderson et al.,
2002; Chin-Parker & Ross, 2002, 2004; Erickson et al., 2005;
Markman & Ross, 2003; Yamauchi & Markman, 1998). To preview
our results, we found support for the prediction that core feature learn-
ing was improved in the Modular relative to the Random category and
that our neural network model could account for this effect. In
Experiment 2, we replicated the results of Experiment 1 using novel
visual insect stimuli to show that this effect replicates across stimulus
modality. In Experiment 3, we compared Modular and Lattice cate-
gory learning using our novel insects in a SL paradigm to test whether
high-level category structure effects emerge even when structure is
incidental to all aspects of the learning task. We again found evidence
that a Modular category structure improved core feature learning and
that the neural network model could account for the behavioral results.
In sum, these experiments reveal that coherent feature clusters facili-
tate category learning in intentional and incidental learning tasks.
The model simulations suggest that the influence of internal category
structure on category learning can be explained by the abstraction of
feature associations during encoding.

Experiment 1

In Experiment 1, human participants were exposed to two novel
animal categories whose features were presented in a verbal format.
Participants learned the features of these categories in an inferential
missing features task, in which a set of features (i.e., an “exemplar”)
was presented and participants selected the feature they believed was
missing out of three possible options. Unbeknownst to the partici-
pants, the internal structure (i.e., pattern of feature correlations) dif-
fered between the two categories: the Random category only
contained one cluster of “core” features with no structure among
its peripheral features (Figure 1B), whereas the Modular category
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Figure 1

Category Structures Used Across the Experiments

MODULAR

RANDOM

Note. Nodes indicate features and edges indicate their co-occurrence statistics. All graphs contained the
same core structure, corresponding to three high-frequency features (purple nodes) sharing strong
co-occurrence statistics (indicated by the thick edges). All core nodes share an edge with all peripheral
nodes (not visualized for simplicity). (A) The Modular structure contained two clusters of peripheral features
such that features in one module could never co-occur with features in the other module. (B) The Random
structure contained peripheral features (blue nodes) with no clustering; any peripheral feature could co-occur
with any other peripheral feature. (C) The Lattice structure, like the Random structure, contained no cluster-
ing in its periphery, but each peripheral feature could only co-occur with a subset of all peripheral features.
See the online article for the color version of the figure.

consisted of an identical core structure in addition to two clusters of
correlated peripheral features (Figure 1A). There are two important
contrasts in the design of these category structures. First, core fea-
tures are more frequent than peripheral features; this frequency dif-
ferential is identical across the Modular and Random structures.
Second, the peripheral features in the Modular structure contain reli-
able feature correlations, whereas the peripheral features in the
Random structure do not. This experiment allows us to evaluate
whether peripheral feature correlations influence participants’ over-
all category representations.

An advantage for the Modular category would suggest that people
are sensitive to the coherent covariation of features created by the
modules, in line with previous computational work (Rogers &
McClelland, 2004). We therefore expected a neural network
model, which instantiates a relational abstraction model of category
learning, to reveal a similar pattern of behavior.

Experiment 1: Behavioral
Method

Participants. Forty participants recruited from Amazon
Mechanical Turk contributed data to Experiment 1 (Age: M =
37.5, SD =11.3; 64% female) and were compensated $4.50 for
their time. An additional five participants did not pass attentional
checks (see catch trials below) and were excluded from analyses.
Consent was obtained for all participants in accordance with the
University of Pennsylvania Institutional Review Board (IRB).

Categories and Features. Two “species” of novel animals were
created, each defined by 11 features that were presented in verbal
form. While classic category learning experiments use a smaller
set of features, increasing the number of feature dimensions brings
us closer to understanding the representation of natural categories.
In fact, prior work has revealed that categories with more feature
dimensions results in humans learning more about those categories

(Hoffman & Murphy, 2006). One of our species contained the fea-
tures large, two legs, solitary, blue eyes, bushy tail, sleeps in caves,
has horns, growls, brown fur, drinks water, and striped. The other
species contained the features small, four legs, social, grey eyes,
hairless tail, sleeps in trees, has claws, roars, black fur, drinks
milk, and spotted. The dimensions specified by the 11 features in
each species were approximately matched (e.g., size, eye color,
markings). In order to add additional variability to the category
exemplars, for each species we generated an additional 40 features
of the form “eats—" (e.g., eats lemons, eats lilacs, eats corn). We
also chose an additional six features per species to use as catch fea-
tures during the behavioral task (e.g., has fangs, white feet). No fea-
tures overlapped between species. All features used in Experiment 1
are shown in Table S1 in the online supplemental materials.
Assignment of species to category label (i.e., Timbo, Sudex) was ran-
domized for each participant.

Category Structures. Experiments 1 and 2 compared Random
and Modular structures (Figure 1). Both graphs contained the same
core structure: three high-frequency features that are found in all
exemplars. This identical core structure—shared by all structure con-
ditions—means that different approaches to the task (e.g., focusing
on only a subset of features) are unlikely to bias core feature behavior
differently across categories. However, the peripheral structures of
the graphs differed: In the Modular structure, the peripheral features
were divided into two modules, or clusters, such that features from
one cluster never co-occurred with features from the other cluster
within the same exemplar. In the Random structure, every peripheral
feature could co-occur with any other peripheral feature within an
exemplar. Note that our Random structure is not named to reflect
a “random network” topology (Watts & Strogatz, 1998), but rather
the fact that exemplars can have any random combination of peri-
pheral features. Importantly, the Modular peripheral structure con-
tained reliable feature correlations whereas the Random peripheral
structure did not. Assignment of species to structure was randomized
across participants. In Experiment 1 the features assigned to the core
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nodes were fixed within species (i.e., large, two legs, and solitary
were always the core features for one category and small, four
legs, and social were always the core features for the other cate-
gory). See Figure 2A for an example of a Modular category in
Experiment 1. The assignment of species (i.e., feature set) to
structure was counterbalanced, so any prior knowledge related to
core-feature assignment did not influence comparisons between
Modular and Random categories. The assignment of features to
the peripheral nodes was randomized such that the features
corresponding to each of the clusters in the Modular category dif-
fered across participants. Finally, category labels (“sudex,”
“timbo”) were randomly assigned to each category.

Category Exemplars. Each exemplar was originally defined
by six features, the combination of which was determined by the
underlying graph structure (i.e., three core, three peripheral).
Within these parameters, the Modular graph generates eight unique
exemplars (4C; x 2 Modules) and the Random graph generates 56
unique exemplars (gCz). To reach the 72 total exemplars per category
needed for the behavioral task, we used nine sets of the eight unique
exemplars from the Modular category; for the Random category, we
used the 56 unique exemplars and subsampled an additional 16 from
the same set to reach a total of 72 exemplars. Each exemplar was also
assigned an idiosyncratic eats feature; each eats feature was seen in
only one or two exemplars throughout the experiment. Thus, each
exemplar contained a total of seven features: three core features,
three peripheral features, and one idiosyncratic feature.

Task Design. Each of the 72 exemplars from each category cor-
responded to a trial in the behavioral task. On each trial, one of the
exemplar’s features was removed and three possible features were
presented as response options. The identity of the missing features
and the identity of the three feature options were determined
by one of four task conditions: category boundary, core structure
(Random and Modular), and peripheral structure (Modular). In

Figure 2
Experiment 1: Design and Results
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(A) On each trial of the missing feature task in Experiment 1, the relevant category label was displayed (e.g., “sudex,

category boundary trials, a Random category exemplar was pre-
sented with a peripheral feature missing; the three options included
the correct peripheral feature from the Random category and two
Modular category peripheral features. These trials tested partici-
pants’ ability to learn which features defined each category. To
test core structure in both Random and Modular categories, an exem-
plar was presented with a core feature missing; the three options
included the correct core feature and two peripheral features from
that category. These trials tested participants’ ability to learn that
the three core features were necessary for each exemplar. (Note
that in the Modular category, because each module contained
only four features, one of the two incorrect features was from an
exemplar-inconsistent module.) To test peripheral structure in the
Modular category, an exemplar was presented with a peripheral fea-
ture missing (e.g., from modulel); the three options included the cor-
rect modulel feature and two incorrect features from module2.
These trials tested participants’ ability to learn that features from
separate modules could not co-occur. The 144 experimental trials
were evenly divided between the boundary, core, and peripheral
conditions: 48 category boundary trials (Random), 48 core structure
trials (24 Random, 24 Modular), and 48 peripheral structure trials
(Modular). An additional six catch trials (three random, three mod-
ular) were designed in which a peripheral feature was removed and
the options included the correct feature in addition to two features
never before seen by the participant. Five participants who
responded incorrectly to three or more of the six catch trials were
excluded from analyses. Trial order was pseudorandomized such
that exemplars from a single category were seen approximately
five times in a row before switching to the other category, and all
catch trials occurred in the second half of the experiment.

The frequencies with which features appeared on exemplars were
balanced within and across structure conditions: Each core and
peripheral feature in the Modular category appeared in 64 and 21

CATEGORY RANDOM MODULAR MODULAR
boundary core core periphery

<

timbo”’) above a box containing

an exemplar’s features. Five structure-consistent features were displayed in addition to an idiosyncratic “eats” feature. A missing feature was indicated by a
question mark and participants decided which of three possible features belonged to the exemplar. The outlined nodes in (B) indicate the exemplar’s shown
features (black) and the correct feature (green). (C) Human participants successfully learned the category boundary, Random core structure, Modular core
structure, and Modular periphery structure. Accuracy was significantly higher for Modular versus Random core structure, #(39) = 3.8, p = .0004, even though
core structure was identical across categories. Error bars reflect standard error of the mean. See the online article for the color version of the figure.
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exemplars, respectively; these frequencies were identical in the
Random category. Core and peripheral features appeared as the cor-
rect response option on eight and six trials, respectively, in both
structure conditions. However, the category boundary condition
made it impossible to balance the extent to which features appeared
as an incorrect response: Each Random peripheral feature appeared
as an incorrect response on six trials, whereas each Modular periph-
eral feature appeared as an incorrect response between 27 and 33
times. Core features were never presented as incorrect response
options.

Verbal Missing Feature Task. Participants completed 150 tri-
als of the missing feature task. Before the task began, the participants
were told: “We will train you on the animal categories by showing
you category members with one feature missing. On each trial,
you will be given three features and you will choose the feature
that you think is the missing one.” On each trial, the category
label was presented above a box in the center of the screen, within
which an exemplar’s features were presented. Three feature options
were presented beneath the box (Figure 2B). The order of the exem-
plar’s features inside the box and the order of the three response
options were randomized on each trial. Participants could take as
long as they needed to select a feature by clicking the corresponding
button. When a participant made a correct response, their selection
would be outlined in green and they would proceed to the next
trial. When a participant made an incorrect response, their selection
would be outlined in red and the trial was repeated until the correct
feature was chosen. The positions of exemplar features and response
options were randomized each time a trial was repeated. Feedback
was presented immediately after a feature option was clicked and
remained on screen for 1,000 ms; the subsequent trial began
1,500 ms after the response was made.

Statistical Analysis. Each trial was coded as accurate (1) or
inaccurate (0) based on the first response given (i.e., a trial was sim-
ilarly marked as incorrect whether it took two or more than two times
to choose the correct feature). Mean accuracies for category boun-
dary, Random core structure, Modular core structure, and Modular
peripheral structure trials were calculated for each participant.
Accuracy across participants was compared to chance (0.33), and
core structure knowledge in Random and Modular categories was
compared using a paired r-test. Relationships between different
kinds of category knowledge were assessed using Pearson correla-
tions. Data from Experiment 1 are available on OSF.

Results

Accuracy for Verbal Missing Features. Mean accuracies
across participants for the four structure conditions are shown in
Figure 2C. Above chance accuracy was observed in the category
boundary, M = 67.4%, SD = 18%, t(39) = 11.9, p < .0001; random
core, M =56.6%, SD=152%, t(39)=9.7, p<.0001; modular
core, M=65.0%, SD=14.8%, t(39)=13.5, p<.0001; and
Modular periphery, M = 37.3%, SD =7.4%, t(39) = 3.4, p=.002,
conditions. A one-way analysis of variance (ANOVA) revealed a sig-
nificant difference between conditions, F(3)=35.9, p <.0001.
Pairwise dependent r-tests revealed that accuracy for Modular peri-
phery structure was significantly lower than all other kinds of structure
knowledge: category boundary, #(39)=10.3, p <.0001; Random
core, 1(39)=79, p<.0001; and Modular core, #(39)=11.5,
p <.0001. Category boundary accuracy exceeded Random core

accuracy, #(39)=3.3, p=.002, but was not significantly higher
than Modular core accuracy (p > .4). Most interestingly, Modular
core accuracy was significantly higher than Random core accuracy,
1(39) = 3.8, p =.0004, 95% confidence interval (CI): [0.04-0.129],
Cohen’s d = 0.56, despite the fact that core structure was identical
across categories.

Relationships Between Kinds of Structure Knowledge.
Accuracy for the Random core and Modular core conditions was sig-
nificantly correlated across participants, 7(39) = 0.57, p = .0001, sug-
gesting that some participants are generally more sensitive to feature
frequencies than others. No relationship between Modular core and
periphery accuracy was observed (p > .2). Category boundary accu-
racy did not reliably predict Random, r(39)=0.25, p=.13, or
Modular, 7(39)=10.30, p=.06, core accuracy; it notably also did
not predict the increase in accuracy for Modular core versus
Random core structure, #(39) = 0.05, p = .74. This suggests that the
observed Modular core benefit does not emerge merely because par-
ticipants learned to avoid Modular peripheral features on category
boundary trials. Similarly, Modular periphery accuracy did not predict
the Modular core structure benefit (p > .9), further suggesting that
higher accuracy on Modular core trials is unlikely to be due to partic-
ipants’ ability to exclude peripheral features from the inconsistent
module on Modular core trials. Thus, the results suggest that partici-
pants were more sensitive to core features in the Modular category,
which contained increased feature correlations in the periphery.

Experiment 1: Neural Network Model
Method

Model Architecture and Parameters. We constructed our
model in the Emergent simulation environment (O’Reilly et al.,
2020). A schematic of our model architecture is shown in
Figure 3A. The model comprised an input layer (22 units), one hid-
den layer (400 units), and an output layer (22 units). The units in the
input and output layers corresponded to the 22 total features across
the two categories. The input layer had full feedforward connectivity
to the hidden layer, and there was full bidirectional connectivity
between the hidden layer and output layer. We used Emergent’s
default parameters and training regime, which implements the
eXtended Contrastive Attractor Learning rule. We expect, however,
that any standard learning rule (e.g., backpropagation) operating on
distributed representations would behave similarly (O’Reilly, 1996).
The neural network model we report here is a simple demonstration
of how we expect all models in this class to behave. We did not opti-
mize any hyperparameters and used the default Emergent settings
including a learning rate of A = 0.04.

Training Protocol. The model was trained as an autoencoder
on full exemplars that corresponded with the 144 experimental trials
used in the behavioral experiment (i.e., the five shown features plus
the one correct feature). That is, training consisted of 144 trials in
which the model was presented with a six-feature exemplar on the
input layer and learned to recreate the six-feature exemplar on
the output layer. As our neural network model is not impacted by
the kinds of attentional effects that likely drive the blocking advan-
tage in humans, and because blocking in neural network models
tends to produce interference, there was no reason to use the same
pseudorandomized trial order used in human behavior. Rather, the
order of training trials was randomized.
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Figure 3
Neural Network Model Simulation of the Missing Feature Task
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(A) The model architecture contained 22 feature nodes on the input and output layers and a 400-unit hidden layer. (B) Across 100 simulations, the

model replicated patterns of human performance such that higher accuracy was observed in the Modular core versus Random core conditions, #(99) = 3.5,
p =.0006. Error bars reflect standard error of the mean. (C) MDS solution revealing how feature representations change from the beginning (center small
dots) to the end (large dots) of training for Random (cool colors) and Modular (warm colors) categories. Modular core (red) and peripheral (orange, pink)
features are more strongly differentiated by the end of learning relative to the Random core (blue) and peripheral (green) features. MDS = multidimensional
scaling. * indicates p < .05. See the online article for the color version of the figure.

Testing Protocol. Test trials were analogous to the experimental
trials in the missing feature task. A total of 144 trials tested category
boundary knowledge (48), Random core structure knowledge (24),
Modular core structure knowledge (24), and Modular peripheral struc-
ture knowledge (48). On each trial, five features were presented on the
input layer (i.e., an exemplar with a missing feature) and we analyzed
activity in the output layer to determine whether the model was able to
successfully activate the correct feature. We restricted this analysis to
the same three features that were presented to human participants; a
test trial was coded as accurate (1) if the model activated the correct
feature more strongly than the two incorrect features, and incorrect
(0) if one of the incorrect features was the most strongly activated
unit. The full set of test trials (144) was run after every eight training
trials for a total of 18 test epochs per simulation.

Model Assessment. We ran the model 100 times, with a new ini-
tialization of weights and randomized trial order for each simulation.
Within each simulation, the mean accuracy for each of the four condi-
tions was calculated within each test epoch. We calculated mean accu-
racy across test epochs for category boundary, Random core, Modular
core, and Modular peripheral conditions for each simulation.
Accuracy was compared to chance (0.33), and paired #-tests were
used to compare Random and Modular core structure knowledge.

Analyzing Feature Representations. In order to assess how
feature representations in the model transformed during learning,
we recorded the pattern of activity evoked across the hidden layer
units on test trials where each feature was presented by itself.
Thus, after every eight training trials we obtained patterns of activity
representing the 22 category features. For each simulation, we simul-
taneously ran multidimensional scaling (MDS) on the 18 Test
Epochs x 22 Feature Representations using Euclidean distance,
enabling us to visualize how the features became more or less similar
to each other across learning (Figure 3C). Owing to the simultaneous
calculation of the distances across all time points, the initial starting
points of the 22 features appear to be clustered by category but are
not in fact meaningfully differentiated.

Results

Mean model accuracy across simulations is shown in Figure 3B.
As with human participants, the model was able to learn the category
boundary (M =87.5%, SD =4.7%), Random core (M = 84.7%,
SD =5.2%), Modular core (M=287.5%, SD=5.3%), and
Modular periphery (M = 76.9%, SD = 6.1%) at above chance levels
(ps <.0001). Most interestingly, the model replicated the Modular
core benefit observed in human participants: Accuracy was signifi-
cantly greater for Modular core structure than for Random core struc-
ture, #(99) = 3.5, p = .0006, 95% CI = [0.012-0.043], Cohen’s d =
0.53, meaning that the neural network model was more sensitive to
the core features in the Modular versus the Random structure.
Visualization of the training course MDS solution reveals that the
model learns to more strongly differentiate the core from peripheral
features in the Modular categories relative to the Random categories
(Figure 3C). The model also learns to differentiate the Modular cat-
egories’ two peripheral modules from each other. The reduction of
interference resulting from this differentiation of the feature clusters
in the Modular categories likely underlies the superior performance
when filling in a missing core feature in this category.

Experiment 1: Discussion

In Experiment 1, we found that the rich internal structure of a novel
category influences category learning more broadly, suggesting that
the structure of a category can warp the emergent category represen-
tation. Most notably, participants found it easier to learn the high fre-
quency core features of the Modular category relative to the Random
category, even though core structure and core feature frequencies were
identical across categories. In line with our predictions, these results
support the hypothesis that increased coherence among semantic fea-
tures benefits learning of individual concepts and categories.

What kind of category representation underlies this effect? One
possibility is that feature associations are encoded into the category
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representation during learning. We therefore predicted that a neural
network model—which instantiates this relational abstraction theory
—would mirror patterns of human behavior and similarly reveal a
Modular core benefit. Indeed, we found that our simple three-layer
network found it easier to learn the high frequency core features
of the Modular category than the non-Modular category. The align-
ment of behavioral and neural network behavior is consistent with a
theory of category representation in which feature associations are
encoded into the representation itself, and supports a role for distrib-
uted representations in novel category learning. These simulations in
Experiment 1 do not eliminate other theories of category representa-
tion, but rather show how an abstraction theory of representation can
succeed in explaining how humans learn and represent feature asso-
ciations in novel categories. Indeed, we found that an exemplar-
based model is capable of explaining the Modular core benefit in
Experiment 1 (online supplemental materials).

Analyses of the learned internal representations in the neural net-
work model revealed that the peripheral features were more differen-
tiated from core features in the Modular category and that the two
clusters of peripheral features were highly differentiated from one
another. This provides the hypothesis that a similar kind of represen-
tational differentiation may be underlying the Modular core benefit
observed in humans. This prediction could be tested through mea-
surement of neural representations or by collecting postlearning fea-
ture similarity ratings from humans and relating it to their task
performance.

The simulation results are consistent with prior demonstrations
that neural network models with distributed representations are
highly attuned to coherent covariation among features at larger
semantic scales (Rogers & McClelland, 2004). Learning the struc-
ture of large semantic domains (e.g., ANIMALS) and learning the inter-
nal structure of individual concepts (e.g., Fox) might involve similar
mechanisms of extracting the correlational structure of features
across items or exemplars (McClelland & Rumelhart, 1985). Just
as the clustering of reliably co-occurring features provides traction
on learning the boundaries berween concepts, as has been previously
shown, clusters of reliably co-occurring features within a concept aid
the formation of a learned, structured category representation that
can be used to generalize across category members and support fea-
ture inference. Both humans and the neural network model learned
this new structure rapidly, orders of magnitude more rapidly than
in the learning of large semantic domains (e.g., Mikolov et al.,
2013; Rogers & McClelland, 2008; Rumelhart, 1990). This suggests
that neither humans nor neural network models require large
amounts of training to build rich distributed representations.

The model’s representation of the task was abstract and not tied to
the particular verbal nature of the stimuli, suggesting that the
Modular core benefit observed in Experiment 1 should manifest in
other domains as well. We thus predicted that we would observe a
similar behavioral effect when categories are presented not as lists
of features but as visual objects.

Experiment 2

The results of Experiment 1 suggest that it is easier for humans to
learn the core structure of a Modular category relative to a Random cat-
egory, indicating a sensitivity to coherent covariation among the clus-
tered peripheral features. Experiment 2 aimed to replicate this effect
using visually rather than verbally presented categories, based on our

expectation that category structure learning effects emerge from a
domain-general learning mechanism. Experiment 2 was thus designed
to test whether the Modular core benefit is robust across feature types.

Experiment 2: Behavior
Method

Participants. Forty participants recruited from Amazon
Mechanical Turk contributed data to Experiment 2 (age: M =
40.6, SD = 12.0; 53% female) and were compensated $4.50 for
their time. An additional eight participants did not pass the atten-
tional checks and were excluded from analyses. Consent was
obtained for all participants in accordance with the University of
Pennsylvania IRB.

Categories and Features. Two species of novel insects were
created with 11 features each, now displayed in visual form (“beetle”
and “butterfly”; Figure 4). Each species consisted of an insect base on
which 11 various animal features could be attached. The general kind
and location of features were matched across the species: horns/anten-
nae (three), sets of wings (two), sets of arms (two), colored markings
(two), tail (one), and toe features (one). These stimuli were designed
such that any subset of the 11 features could be added to the base to
form a potential category exemplar. An additional six features were
generated for each species to use in the catch trials. The category
base and features were created in Adobe Illustrator by cropping and
editing open-source images of real animals found on the internet.
Category stimuli are publicly available for use (https://osf.io/te96s/?
view_only=66bf619aab544938b80903b3f7b4a287). No category
labels were used in Experiment 2.

Category Structures and Exemplars. The same Random
and Modular structures used in Experiment 1 were used in
Experiment 2. Assignment of species to structure was randomized
across participants, and assignment of features to graph nodes was
fully randomized for each participant (i.e., any feature could be a
core feature). The set of visual exemplars in Experiment 2 were gen-
erated using an identical procedure to the one used in Experiment 1,
resulting in 72 six-feature exemplars within both the Random and
Modular categories. Instead of assigning an idiosyncratic feature to
the visual exemplars, the color of the insect base was randomly
adjusted slightly on each trial to add additional variability across
exemplars.

Figure 4
Visual Stimuli in Experiments 2 and 3

Note. The “beetle” (left) and “butterfly” (right) species each consisted of
an insect base upon which 11 features could be presented. See the online
article for the color version of the figure.
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Task Design. The design of Experiment 2 was identical to
Experiment 1, resulting in a total of 144 experimental trials and
six catch trials. Participants who did not respond correctly to at
least four of the six catch trials (V= 8) were excluded from subse-
quent analyses.

Visual Missing Feature Task. Participants completed 150 tri-
als of the missing feature task, and were given the same instructions
used in Experiment 1. On each trial, the visual exemplar with five
features was presented in the center of the screen, and the three fea-
ture options were displayed below (Figure 5A and 5B). The feature
options were presented on a desaturated insect base above a num-
bered button (on category boundary trials, the insect base consistent
with the displayed exemplar was used even though it displayed a fea-
ture from the incorrect category). Participants could take as long as
they needed to click on the button corresponding to their feature
choice. Feedback was presented in an identical way to Experiment 1
and trials were repeated until the correct feature choice was made.

Statistical Analysis. Mean accuracy for each participant and
each condition was calculated as in Experiment 1. Accuracy for
each condition was compared to chance (0.33), and conditions
were compared with paired #-tests and Pearson correlations. Data
from Experiment 2 are available on OSF.

Results

Accuracy for Visual Missing Features. Mean accuracies
across participants for the four structure conditions are shown in
Figure 5D. As in Experiment 1, above chance accuracy was observed
in the category boundary, M =48.9%, SD = 13.5%, t(39)=7.3,
p <.0001; Random core, M =53.5%, SD =19.4%, t(39) =6.6,
p <.0001; Modular core, M =60.7%, SD=18.1%, t(39) =9.6,
p <.0001; and Modular periphery, M =38.7%, SD=9.9%,
1(39) = 3.4, p = .002, conditions. A one-way ANOVA revealed a sig-
nificant difference between conditions, F(3)=13.9, p <.0001.

Figure 5
Visual Missing Feature Task in Experiment 2

Pairwise dependent #-tests revealed that accuracy for Modular periph-
ery structure was significantly lower than all other kinds of structure
knowledge: category boundary, #(39)=4.2, p<.001; Random
core, 1(39) = 5.0, p < .001; and Modular core, #(39) = 7.7, p < .001.
Category boundary accuracy did not significantly differ from Random
core accuracy, #(39) = 1.5, p = .15, but was significantly lower than
Modular core accuracy, #(39) = 3.7, p < .001. Most importantly, we
replicated the Modular core benefit using visual categories: Modular
core accuracy was significantly higher than Random core accuracy,
1(39)=2.8, p=.007, 95% CI=1[0.02-0.123], Cohen’s d=0.38,
despite the fact that core structure and core feature frequencies were
identical across categories.

Relationships Between Kinds of Structure Knowledge.
Accuracy for Random core and Modular core structures was signifi-
cantly correlated, (39) = 0.63, p <.0001. No significant relation-
ship between Modular core and periphery accuracy was observed,
r(39) =0.26, p = .10. Category boundary accuracy did not reliably
predict Random, #(39) = 0.31, p = .052, or Modular, r(39) =0.19,
p = .23, accuracy; it notably also did not predict the increase in accu-
racy for Modular core versus Random core structure, 7(39) = —0.16,
p > .3. Similarly, Modular periphery accuracy did not predict the
Modular core structure benefit, 7(39) = —0.10, p > .5.

Experiment 2: Discussion

Using visual category stimuli, Experiment 2 replicated the behav-
ioral Modular core benefit observed in Experiment 1. Participants
were exposed to two novel insect categories defined by sets of dis-
crete, nonoverlapping features in a missing feature task. Even though
the structure and frequencies of core features were identical across
the Modular and Random categories, participants found it easier
to learn the three high frequency core features of the Modular cate-
gory. These results further support the claim that humans leverage
feature correlations across category members to build structured
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(A) For each participant, assignment of structure (Modular vs. Random) to species (Beetle vs. Butterfly) was randomized, as were the feature-node

assignments. (B) On each trial, an exemplar with five features was presented and participants selected which of three possible features they thought belonged.
The outlined nodes in (A) indicate the shown exemplar’s features on this trial (black) and the correct feature response (green). (C) The Modular core benefit was
replicated in Experiment 2 such that participants’ accuracy was significantly higher for the Modular core versus Random core trials, #(39) = 2.8, p =.007. *

indicates p < .05. See the online article for the color version of the figure.
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category representations and that these representations support suc-
cessful feature inference. The replication across stimulus types sug-
gests that a domain-general learning mechanism is at play.

While results from Experiments 1 and 2 converge on the finding
that feature correlations benefit the learning of a category more
broadly, we are left with three questions. The first relates to the dis-
tribution of features in the missing feature task. In the displayed
exemplars, feature frequencies were exactly balanced—core features
appeared with equal frequencies in the Random and Modular catego-
ries, as did peripheral features. The frequency with which core and
peripheral features appeared as the correct feature response was
similarly balanced across category structures. However, the feature
frequencies in the set of incorrect feature responses were not
balanced—Modular peripheral features appeared more frequently
as incorrect options than did Random peripheral features. It is possi-
ble that participants learned to reject Modular peripheral features in
the missing feature task, thereby increasing the likelihood that they
would respond correctly on the Modular core trials. This cannot
explain the Modular benefit observed in the model simulations,
and our correlational analyses on human behavior do not lend sup-
port to this explanation. However, we aimed to design another exper-
iment that would eliminate this possibility entirely.

The second question relates to pairwise correlations versus high-
order structure. The Modular and Random category structures dif-
fered on both counts—the Random structure contained no reliable
pairwise feature correlations in its periphery and therefore no higher-
order structure. The Modular structure contained higher-order fea-
ture clusters, but also had increased pairs of correlated features as
aresult. Consequently, the results from Experiments 1 and 2 suggest
that, at minimum, pairwise feature correlations influence learning,
but we cannot make any claims about the encoding of higher-level
structure. We thus aimed to design a new non-Modular graph struc-
ture that still contained no higher-order peripheral clustering but was
better matched with the Modular graph in terms of pairwise feature
correlations. The presence of peripheral structure in this new graph
would additionally enable a more balanced task design and would
help remove the constraints that contributed to the feature frequency
imbalance in Experiments 1 and 2.

The third question relates to the differentiation of encoding and
retrieval processes. In Experiments 1 and 2, encoding and retrieval
were not cleanly differentiated in time, since categories were learned
via feedback on inferential questions that tapped into category struc-
ture knowledge. A stronger claim could be made if encoding and
retrieval processes were perfectly disentangled. This is another
goal of Experiment 3.

Experiment 3

In Experiments 1 and 2, categories were learned in an inferential
missing features task, which has previously been shown to induce
learning of internal category structure (Anderson et al., 2002;
Chin-Parker & Ross, 2002, 2004; Markman & Ross, 2003;
Yamauchi & Markman, 1998). This task can be classified as an
intentional learning condition, since the task encouraged partici-
pants to focus on the structure of each category. That is, successful
performance required participants to integrate information across
exemplars to learn about which features are most frequent and
which features tend to co-occur. It could be that feature associations
are only encoded under intentional conditions when they are relevant

to the learning task. In Experiment 3, participants were exposed to
novel categories in a task that did not encourage category-related
processing in any way, resulting in a purely incidental learning con-
dition. We know that incidental learning can result in sensitivity to
feature correlations at retrieval, but it is unclear whether a relational
abstraction model of category representation can explain this effect
(Wattenmaker, 1991, 1993). We also know that humans can learn
statistical structure in other domains even when it is irrelevant to
the explicit task. In Experiment 3, we embed category feature corre-
lations in a SL paradigm to ask whether feature associations are
abstracted into category representations even under purely incidental
learning conditions.

Whereas the Modular structure was previously contrasted with a
Random structure with no peripheral pairwise feature correlations,
in Experiment 3 we contrasted the Modular structure with a Lattice
structure in which pairs of peripheral features are correlated but do
not reveal any higher-order clustering (Figure 1C). This enabled us
to test both core and peripheral structure knowledge in all categories,
and to evaluate the influence of higher-level feature structure on the
representations that emerge during category learning.

Participants were exposed to a single category in a SL paradigm in
which a temporal stream of two-feature exemplars were presented.
The only task given to participants was an orthogonal one-back
repeat detection task; no focus on frequent or correlated features
was encouraged or required to succeed at this task. We then tested
participants’ category structure knowledge in a two-alternative
forced choice (2AFC) task and in a feature selection task, in
which they were asked to select the three features most important
for the category. Whereas the 2AFC task indirectly taps into feature
correlation and frequency information, the feature selection task
more explicitly taps into feature frequency sensitivity. We again
ran simulations of the neural network model to test whether an
abstraction model of category representation could replicate patterns
of human learning.

Thus, this experiment provides a more conservative test of our
prediction that feature correlations are abstracted during encoding.
It is more conservative in three ways. First, the category structures
differ in higher-order clustering rather than simple pairwise correla-
tions: a Modular core benefit would imply that the feature-based
structures encoded into category representations are more complex
than simple pairwise associations. Second, category structure is
completely incidental to the learning task, and therefore an observed
Modular core benefit would imply that structure is automatically
encoded into category representations. Third, encoding and retrieval
stages are cleanly separated in time, enabling a clear evaluation of
what is abstracted during category encoding.

Experiment 3: Behavioral
Method

Participants. One hundred participants contributed data to
Experiment 3 and were recruited from Amazon Mechanical Turk
(Mean age: M = 39.2, SD = 10.1; 45% female). An additional 16 par-
ticipants were excluded from analysis based on poor performance on
the orthogonal task. Participants received a base pay of $2 in addition
to a bonus of up to $6 based on performance on the orthogonal task
(M=$4.79 bonus for 100 participants). Consent was obtained for all
participants in accordance with the University of Pennsylvania IRB.
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Categories and Features. The beetle and butterfly species in
Experiment 2 were used in Experiment 3. No catch features or cate-
gory labels were used.

Category Structures. Experiment 3 examined the same
Modular structure from Experiments 1 and 2, but replaced the
Random structure with a Lattice structure (Figure 1C). The Lattice
graph contains the same core structure as the other two graphs, but
the peripheral structure differs. Like the Random graph, the
Lattice graph has no clustering in its periphery. However, unlike
the Random graph, the peripheral nodes are not fully connected,
meaning that each peripheral node is only connected to a subset of
all peripheral nodes. There were two motivations for using a
Lattice instead of a Random graph: (a) The structure of the Lattice
graph enables peripheral structure knowledge to be trained and
tested, and (b) the degree of pairwise feature correlations is more
balanced with the Modular graph. That is, in our generated streams

Figure 6
Experiment 3: Tasks and Design

SOLOMON AND SCHAPIRO

of categorical stimuli described below, each peripheral node can
only be followed by three other peripheral nodes in both the
Modular and Lattice structures. Comparing Modular and Lattice
structures thus enables a more direct assessment of the specific influ-
ence of higher-level feature clustering on core structure learning.
Assignment of species to structure and subsequent assignment of
features to graph nodes was fully randomized for each participant.
That is, any of the 11 species-specific features could become a
core feature or a peripheral feature within a category.

Generating Stimuli for the SL Task. We designed an SL task
that exposed participants to a category’s feature co-occurrence struc-
ture by embedding co-occurrence statistics in a temporal stream of
stimuli (Figure 6A). Each SL task trial consisted of an exemplar
with two features (x and y) that were directly connected on the
graph. The subsequent trial would contain one of the same features
() and a new feature (z), directly connected to y. The order of the
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Participants were exposed to a single category with either a Lattice or Modular structure. (A) In the

SL task, participants viewed a stream of 550 two-feature exemplars. On each trial one feature was swapped
for another, and the order of features was determined by a random walk over the category structure graph.
Category structure was incidental to the orthogonal one-back repeat detection task. The actual joint proba-
bilities between features successfully reflected the (B) Lattice and (C) Modular structures. (D) The modu-
larity distinction between structure conditions was successfully maintained in the stimulus streams. (E)
After the SL task participants completed a 2AFC task, in which they were asked to select which of two exem-
plars was a better example of the learned category. SL = statistical learning; 2AFC = two-alternative forced
choice. See the online article for the color version of the figure.
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features was thus determined by a random walk across the assigned
graph, with two features on the walk displayed per trial. These random
walks contained 550 steps (i.e., stimuli) and were generated based on
transitional probability matrices that maintained the underlying
feature-based Modular and Lattice structures. In both Modular and
Lattice categories, each peripheral feature could be followed by
three other peripheral features (in addition to the three core features).
In order to ensure that other various properties of the random walks
were matched across Modular and Lattice structures, we first generated
a set of 100 walks per graph which all contained balanced frequencies
of core and peripheral features. All paths contained a total of 273-277
presentations of core features—Lattice: M = 274.8; Modular: M =
274.9; 1(122) =0.36, p=_.72. In the set of Modular walks, we
balanced the frequency of modulel and module2 features such that
features from each module were seen 135-140 times. From this set
of possible paths, we subsampled 62 paths for each graph structure
such that Lattice and Modular structures were exactly matched on
the number of one-back repeat trials (M = 79.2, SD = 6.7). To ensure
that the feature transition statistics in these walks mirrored the intended
Modular and Lattice structures, we used the feature transition statistics
within each of the final walks to derive the actual joint feature proba-
bilities for each structure (Figure 6B and 6C). We calculated the mod-
ularity (Q) of these derived graphs to ensure that the structures
underlying the Modular walks were indeed more modular than the
structures underlying the Lattice walks (Figure 6D). Modularity was
calculated using the Brain Connectivity Toolbox (brain-connectiv-
ity-toolbox.net; Rubinov & Sporns, 2010).

Generating Stimuli for the 2AFC Task. For each category
structure, we generated 24 correct, structure-consistent exemplars
with six features each. Each of these correct exemplars was paired
with an incorrect, structure-inconsistent exemplar, in which one of
the correct exemplar’s features was swapped for another feature
that violated the assigned category structure (Figure 6E).

Using six-feature exemplars, the Lattice category structure allows
for 24 unique correct exemplars and the Modular category structure
allows for eight unique correct exemplars; to match the number of
exemplars across categories, three sets of the eight unique
Modular exemplars were used. Within each category, each of the
24 correct exemplars was assigned to test either core (eight) or
peripheral (16) structure knowledge. For each correct exemplar,
the exact feature that was replaced to create the paired incorrect
exemplar depended on the kind of structure (i.e., core, peripheral)
the pair was designed to test. We will refer to these different cor-
rect/incorrect exemplar pairs as “Core pairs” and “Peripheral pairs.”

In Core pairs, the incorrect exemplar was created by replacing one
of the three core features in the correct exemplar with a peripheral fea-
ture that did not violate the peripheral structure. For example, in a
Modular category exemplar containing features from modulel, a
core feature would be replaced with another modulel feature. Thus,
the features of the incorrect exemplar are consistent with the cate-
gory’s peripheral structure, while the core structure is violated. A sim-
ilar strategy was used to generate Core pairs for the Lattice category.

In Peripheral pairs, the incorrect exemplar was created by replac-
ing one of the three peripheral features in the correct exemplar with
another peripheral feature that did violate the peripheral structure.
For example, a modulel feature might be replaced with a module2
feature; since modulel and module2 features never co-occur, the
peripheral structure is violated while the core structure remains
intact. A similar strategy was used to generate Peripheral pairs for

the Lattice category, in which all incorrect exemplars contained a
feature pair with 0% joint probability, never appearing together in
the SL task.

The exemplar pairs were designed such that feature frequencies
were balanced within Modular and Lattice categories. Across all
exemplar pairs within each category structure, each peripheral fea-
ture appeared nine times in correct exemplars and 10 times in incor-
rect exemplars; each core feature appeared 24 times in correct
exemplars and 21-22 times in incorrect exemplars. The specific con-
sistent features that were swapped with inconsistent features were
also balanced: In both category structures, each peripheral feature
was the consistent feature twice (i.e., the feature removed in the
incorrect exemplar) and appeared three times as the inconsistent fea-
ture in incorrect exemplars. Each core feature was the consistent fea-
ture two to three times; core features were never used as inconsistent
features.

Task Protocols. Each participant was exposed to a single cate-
gory whose species (i.e., Beetle or Butterfly) and structure (i.e.,
Modular or Lattice) was randomly assigned. The assignment of spe-
cific features to graph nodes was also randomized for each partici-
pant. Participants were told that they were part of a scientific
research team that had discovered a new insect species and that
“the overall goal of the project is to better understand the character-
istics and features that define this new species.” However, partici-
pants were also informed that “the collected specimens are old and
sometimes they are missing body parts (e.g., wings, legs) or their
color markings have faded.” As an initial exposure to the category,
the participants were shown four full category exemplars, each with
six features that were consistent with the assigned category structure.
The participants then completed three tasks: (a) an SL task, (b) a
2AFC task, and (c) an explicit feature selection task.

SL Task. Participants viewed a stream of “partial” category
exemplars with two features each (Figure 6A). The insect base
remained identical throughout the experiment, but one of the two
features was replaced by another feature on each subsequent trial
based on one of the random walks described above; the specific
walk shown to each participant was chosen randomly out of the
62 options. The SL task comprised 550 trials: In each trial the exem-
plar remained on screen for 1,800ms, followed by a 200 ms inter-
stimulus interval with a blank screen. The participants performed
an orthogonal one-back task in which they pressed a key on each
trial to indicate whether the exemplar on that trial was identical to
the exemplar on the previous trial; participants were instructed to
press the right arrow key for repeats and the left arrow key otherwise.
Repeat exemplars were presented on ~14% of the trials. Feedback
was given for hits, misses, and false alarms: a green star appeared
beneath the exemplar on a correct hit and a red cross appeared for
misses and false alarms. A d-prime sensitivity measure was calcu-
lated and updated on each trial, transformed into a percentage
score (0%—100%), and displayed beneath the insect stimuli for the
entirely of the SL task to motivate participants to pay attention to
the stimuli and successfully complete the one-back task. The partic-
ipants were told ahead of time that their final score on the last SL trial
determined their bonus payment. A set of practice trials using
abstract shapes was given to participants before the main SL task
to acclimate them to the task and clarify instructions.

2AFC Task. In the 2AFC task, participants were instructed to
use their new knowledge of the species to decide what full specimens
should look like. Specifically, they were asked to decide on each trial
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which of the two specimens is a better example of the newly discov-
ered insect (Figure 6E). Each of the 24 trials consisted of one of the
Core or Peripheral exemplar pairs described above, in which one
exemplar was consistent with the category’s feature-based structure
and the other was inconsistent. The two exemplars were shown side
by side in the center of a white screen; left/right placement of cor-
rect/incorrect exemplars was randomized on each trial. Stimuli
remained on the screen until participants made a response by pressing
the left or right button on their keyboard. The category stimuli disap-
peared from the screen 500 ms after a response, and 1,000 ms later the
next trial began.

Explicit Structure Task. In the final task, participants were
asked to “click on the three features that are most important for
this species.” The 11 category features were presented individually,
each one attached to the greyscale insect base. The 11 features
appeared in a grid on the screen, and participants were asked to
click on three features to make their response. When a feature was
selected, a blue outline appeared around the feature so the partici-
pants could keep track of their responses. Once three features were
selected, the task immediately ended.

Statistical Analysis. In the SL task data, we analyzed partici-
pants’ repeat detection sensitivity in order to exclude participants
who did not pay sufficient attention to the stimuli. We used a
d-prime sensitivity measure, in which sensitivity was defined in
terms of the hit rate and false alarm rate. We excluded 15 participants
whose sensitivity score was below 50% by the final trial and one
additional participant who self-reported taking notes during the
experiment, resulting in 16 participants (separate from the final
N = 100) that were excluded from subsequent analyses.

We analyzed reaction time (RT) and accuracy on the 2AFC task.
We used RT to exclude trials in which participants’ responses were
unlikely to be meaningful (RT < 250 ms or RT > 10,000 ms). In

Figure 7
Behavioral Results From Experiment 3
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the remaining trials, we determined whether participants chose the
correct (1) over the incorrect exemplar (0). We averaged these accu-
racy scores separately for Core and Peripheral structure trials, result-
ing in a mean Core accuracy and mean Peripheral accuracy for each
participant. Independent ¢-tests were used to compare mean Modular
versus Lattice core structure accuracy, and Pearson correlations were
used to assess relationships between conditions.

In the Explicit structure task, we calculated accuracy based
on the number of correct core features each participant selected
(0-3) and compared it against chance-level performance (0.27).
Independent #-tests were used to compare accuracy between
Modular and Lattice structures. Data from Experiment 3 is avail-
able on OSF.

Results

Accuracy on 2AFC Task. We determined whether participants
successfully learned core and peripheral structures of Lattice and
Modular categories using data from the 2AFC task (Figure 7B).
While participants’ ability to learn Lattice core structure was incon-
clusive, M = 55%, SD = 18.1%, 1(49) = 2.0, p = .05, accuracy for
Modular core structure was reliably above chance, M = 60.4%,
SD =24.1%, 1(49) = 3.1, p = .004; however, there was no reliable
difference between Lattice and Modular core accuracy, #(98) =
1.2, p> 2. Our data also suggests that participants were not able
to learn the Lattice periphery structure, M =49.1%, SD = 12.9%,
1(49) = 0.5, p > .6, but were successful at learning Modular periph-
ery structure, M = 57.4%, SD = 17.6%, t(49) = 2.9, p = .005; accu-
racy was significantly higher for Modular versus Lattice periphery
structure, #(49) =2.7, p=.01. No reliable relationship was found
between core and periphery accuracy in either the Lattice, r(49) =
0.11, p > 4, or Modular, r(49) =0.14, p > .3, category.

B 2AFC Task
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(A) In the explicit feature selection task, participants found it easier to select the three core features from the Modular versus the Lattice category,

1(98) = 2.3, p = .02, replicating the preference observed in Experiments 1 and 2. (B) The 2AFC task did not reveal a significant difference in accuracy between
Modular core and Lattice core trials. 2AFC = two-alternative forced choice. * indicates p < .05. See the online article for the color version of the figure.
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Accuracy on Explicit Feature Selection Task. We also exam-
ined core structure learning in the explicit feature selection task, in
which participants selected the three features that they thought were
most important for the category (Figure 7A). Accuracy was reliably
above chance for both Lattice, #(49)=2.7, p=.01, and Modular,
1(49) =5.0, p <.0001, categories. Consistent with results from the
previous behavioral experiments, accuracy was significantly higher
for Modular relative to Lattice core structure, #(98) =2.3, p =.02,
95% CI =[0.02-0.234], Cohen’s d = 0.47.

Figure 8
Neural Network Model Simulations in Experiment 3
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Experiment 3: Neural Network Model
Method

Model Architecture and Parameters. The model used in
Experiment 1 was modified slightly for Experiment 3. The input
and output layers were restricted to 11 features each since the
model was trained to learn only one category at a time
(Figure 8A). We also removed the inhibition on the output layer
so that the model was able to activate all features simultaneously

1 . *
0.9 .
-
0.8
0.7 - KX
064 Al
05 e e e e e
0.4
0.3
0.2
0.1 :
0 .
LATTICE LATTICE MODULAR MODULAR
periphery core core periphery
MODULAR
0.4
&®
0.31 d)
0.24
0.14
o -
0]
-0.1 O
OO
-0.2 4
-0.31 {
-0.4 T v
-0.5 0 0.5

(A) The model architecture contained 11 feature units on the input and output layers and a 400-unit hidden layer. (B) After training on the SL stimuli,

the model performed more accurately on Modular core vs. Lattice core 2AFC trials, #(122) = 3.0, p = .003. (C) MDS scaling solutions for the final feature
representations in the Lattice and Modular categories. Lattice core features are blue; Modular core features are red. SL = statistical learning; 2AFC =
two-alternative forced choice; MDS = multidimensional scaling. * indicates p < .05. See the online article for the color version of the figure.
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despite learning to only activate two features during training (see
below).

Training Protocol. The model was trained on the 62 Lattice
and 62 Modular paths generated for the SL task, resulting in 62
Lattice and 62 Modular simulations. Training consisted of 550 trials
in which the model was presented with two features on the input
layer and learned to replicate the same two features on the output
layer. The training trials were presented in the same order shown
to human participants.

Testing Protocol. Testing trials were analogous to the 2AFC
trials shown to human participants. On each of the 24 trials, the
model was presented with the five features shared by the correct
and incorrect exemplars. We observed the resulting activity on the
output layer to determine whether the correct exemplar’s extra fea-
ture (structure-consistent) or the incorrect exemplar’s extra feature
(structure-inconsistent) was more strongly activated. Binary accu-
racy was assigned on each trial based on whether the consistent
(1) or inconsistent (0) feature was more strongly activated.

Model Assessment. We used the 62 Modular and 62 Lattice
paths to train and test the models, resulting in 62 simulations per
structure. For each structure, and within each simulation, we calcu-
lated the mean accuracy separately for core structure and peripheral
structure trials. Accuracy was compared against chance (0.5) and
independent #-tests were used to assess differences in core and
peripheral structure learning across structure conditions.

Analyzing Feature Representations. After the full training
protocol, the model was probed with each of the 11 category features
by setting each individual feature unit’s activation to 1 on the input
layer. Settled activation in the 20 x 20 hidden layer was extracted,
resulting in 11 final feature representations. We assessed feature sim-
ilarity using cosine distance and extracted network measures from
each run’s learned feature structure using the Brain Connectivity
Toolbox (Rubinov & Sporns, 2010). For each network, we calcu-
lated its modularity, and also the local strength of each node (i.e.,
weighted connections of each feature to all other features). Local fea-
ture strengths were averaged to provide a network-level measure of
overall feature connectivity. MDS was used to visualize the space of
learned feature representations.

Results

Mean model accuracy across runs for Lattice and Modular catego-
ries is shown in Figure 8B. While human participants were able to
learn the Modular but not the Lattice periphery structure, the model
was able to learn the peripheral structure of both the Modular, M =
83.9%, SD =10.5, #(61) =25.5, p <.0001, and Lattice categories,
M=1732%, SD=10.7, t(61)=17.1, p<.0001. The model also
learned the core structure of the Modular, M = 70.6%, SD = 19.0,
1(61)=8.5, p<<.0001, and Lattice, M=59.9%, SD =203,
1(61) = 3.8, p =.0003, categories at above chance levels. Most nota-
bly, model accuracy for Modular core structure was greater than accu-
racy for Lattice core structure, #(122)=3.0, p=.003, 95%
CI=[0.037-0.177], Cohen’s d = 0.41.

MDS solutions to the final learned feature representations, aver-
aged across runs, are visualized in Figure 8C. On visual inspection,
in both categories, core features are separated from peripheral fea-
tures and the unique peripheral structures are discernable, demon-
strating that the learned distributed representations were impacted
by the patterns of feature associations. As in Experiment 1, it is
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possible that less interference among feature groups in the
Modular categories can account for the observed Modular core ben-
efit. To compare the shape of the learned representational spaces
across category structures, we quantified differences between the
Modular and Lattice runs using network strength to assess the degree
of pairwise connectedness between the features and modularity to
characterize each network’s higher-level structure. We observed
no difference in network strength, #(122) = 1.01, p > .3, indicating
that pairwise feature association strengths in the Modular
and Lattice conditions were equated overall. However, the modular-
ity of the learned feature networks in Modular (M = 0.22) and
Lattice (M = 0.18) conditions differed significantly, 7(122) = 2.82,
p =.006. This suggests that the Modular advantage is driven, as in
Experiment 1, by the differentiated representations of the feature
clusters in that category.

Experiment 3: Discussion

In Experiment 3, we replicated the Modular core benefit observed
in Experiments 1 and 2 in a different task paradigm and with a new
graph structure. Participants were each exposed to either a Modular
or Lattice category in a temporal SL paradigm in which category
structure was entirely incidental to the orthogonal task.
Participants subsequently completed a 2AFC task which tested
their ability to detect structure-consistent exemplars, and a feature
selection task which tested sensitivity to the three high-frequency
core category features.

The 2AFC results demonstrated that participants successfully
learned Modular core structure, while ability to learn Lattice core
structure was inconclusive. However, Modular core accuracy was
not significantly greater than Lattice core accuracy in this task.
Given that Experiment 3 instantiated a very conservative test of
the previously observed Modular core benefit, it is not that surprising
that a smaller difference was observed. This finding can be inter-
preted in a couple different ways. First, the unreliable difference
between Lattice and Modular core structure knowledge in the
2AFC task can be interpreted to reflect the fact that both structures
contained pairwise correlations between peripheral features. These
pairwise feature covariations likely facilitated Lattice category learn-
ing overall, relative to the Random structure used in the first two
experiments. These results suggest that pairwise feature correlations
are abstracted during category encoding even in the absence of
higher-level feature clustering. Note, however, that participants
exposed to a Lattice category did not reliably learn the core feature
structure, whereas participants exposed to a Modular category
were reliably above chance on tests of core structure knowledge.
While the difference between Modular and Lattice core knowledge
on the 2AFC task was not reliable, the pattern suggests that higher-
level structure—beyond pairwise associations—may be relevant
during novel category encoding. The second interpretation is that
the purely incidental nature of the task did not encourage focus
on internal category structure and therefore feature associations
were not encoded. However, participants in the Modular condition
did exhibit sensitivity to peripheral structure in the 2AFC test, and
the results of the feature selection task show that the categories’
peripheral structure did indeed influence category learning more
broadly.

In the feature selection task, participants were asked to select the
three most important category features. Correctly selecting the three
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core features reflects participants’ sensitivity to the category’s core
structure. Replicating the Modular core benefit from Experiments
1 and 2, participants were more sensitive to core features in the
Modular versus Lattice condition. Even though Experiment 3 was
aconservative test of our hypotheses, these findings suggest that fea-
ture associations are encoded during category exposure and that
increased feature clustering benefits learning. Increased clustering
in novel categories thus appears to benefit category learning across
stimulus modalities and experimental tasks.

We also found that a neural network model was able to success-
fully replicate the Modular core benefit observed in human behavior.
The model was exposed to the same pairs of features presented to
human participants in the SL task, and a subsequent test analogous
to the human 2AFC task revealed that the model was more likely to
generate correct relative to incorrect exemplars. In human behavior,
the Modular core benefit emerged in the Feature Selection task rather
than the 2AFC task. However, an overall facilitation for Modular cat-
egories was observed in both humans and neural network model
simulations in Experiment 3. Furthermore, a graph-based analysis
of the model’s learned feature representations suggests that this dif-
ference is driven by the high-level modular structure, rather than
pairwise feature associations. While these simulations alone cannot
rule out alternative theories of category representation, we provide
additional simulations in the online supplemental materials suggest-
ing that the neural network model is better able to explain these find-
ings than standard exemplar or prototype models, which did not
exhibit the Modular core benefit. Taken together, these findings
suggest that the Modular core benefits observed in Experiments 1,
2, and 3 emerge from a shared mechanism that encodes feature
co-occurrence statistics across episodes, regardless of stimulus
modality or task design.

General Discussion

Across three experiments, we aimed to determine whether certain
structures facilitate category learning and whether internal category
structure is encoded into category representations. We hypothesized
that, if feature correlations are encoded into category representations
during learning, this should have consequences for category learning
and representation more broadly. We predicted that different patterns
of feature associations (peripheral structure) would shape the
learned category representation and influence learning of a separate
set of features (core structure). These predictions are consistent with
a relational abstraction model of category representation, in which
feature associations are encoded but traces of the original exemplars
are lost. To test these predictions, we designed novel categories char-
acterized by different graph structures such that some categories
contained multiple communities of reliably co-occurring features
(Modular) whereas other categories did not (Random, Lattice).
All categories had a separate set of high-frequency core features,
and testing these features let us examine any potential influence of
feature correlations on the emergent category representations.
Human behavior in the three experiments revealed that reliable
feature covariation facilitated category learning. A neural network
model—which instantiates the relational abstraction theory—
revealed the same learning patterns observed in humans. These
behavioral and modeling results are consistent with an abstraction
theory of category learning, in which feature correlations are embed-
ded within category representations themselves.

Coherent Covariation and Structure Learning

Our observed benefit for Modular categories adds to our under-
standing of how humans extract structure from their environment
more generally. Outside of the semantic domain, recent work has
highlighted humans’ sensitivity to structure, characterized by under-
lying graph structures like the ones used here (Kakaei et al., 2021;
Karuza et al., 2019; Lynn & Bassett, 2020; Lynn et al., 2020;
Schapiro et al., 2013). Karuza et al. (2019) use novel visual stimuli
in a series of behavioral experiments to reveal that humans are sen-
sitive to graph structures containing a range of different numbers and
sizes of communities, or modules. A recent behavioral study (Kakaei
et al., 2021) suggests that temporal community structure accelerates
recognition learning of novel visual objects and affects the order in
which objects are learned. Using a sequential motor task in humans,
Lynn et al. (2020) utilize random walks across different graph struc-
tures to reveal overall faster responses on a modular graph relative to
alattice graph. Additional behavioral work suggests that humans can
extract higher-order structure from the environment and leverage this
learned structure to aid subsequent learning (Mark et al., 2020). The
formation of potential “cognitive maps” similarly involves the
extraction and representation of environmental structure that can
be applied across many domains (see below). Thus, humans appear
sensitive to higher-order structure, and this has implications for real-
world learning in domains such as navigation, language acquisition,
event learning, and knowledge accumulation (Karuza et al., 2016;
Lynn & Bassett, 2020; Schapiro et al., 2013). There also appears
to be acommon thread through behavioral work in humans revealing
a learning benefit for modular graphs, with clusters of reliably asso-
ciated nodes. Our present findings extend this phenomenon to a
semantic context: Humans find it easier to learn categories character-
ized by a modular structure containing sets of reliably co-occurring
semantic features. Furthermore, empirical support for the claim that
structure is encoded within learned representations is relevant within
any domain concerned with cognitive or neural representations.

Like humans, our neural network models revealed a learning ben-
efit for Modular categories. These findings complement previous
computational investigations of semantic learning. The semantic
models of Rogers and McClelland (2004) were able to leverage
coherent covariation among features to progressively differentiate
semantic categories during learning in a trajectory that corresponds
with the development of semantic memory in human infants. For
example, animals share many features with each other (e.g., can
move, has skin) that are not shared with plants. The model is pre-
sented with features of different animals and plants (e.g., bird,
tree) and learns internal representations of these items across simu-
lated developmental timescales. The model’s learning algorithm
drives items with shared features to share connection weights,
which leads to increased similarity among animal representations
(e.g., BIRD, FIsH) and increased similarity among plant representa-
tions (e.g., TREE, FLOWER). The lack of shared features between ani-
mals and plants results in differentiation between these semantic
classes. In other words, the coherent covariation among features
enables the formation of semantic representations in the Rogers
and McClelland model that reflect the real-world semantic hierarchy.
Saxe et al. (2019) formalized a notion of category coherence that
describes more precisely how deep linear neural networks extract
categories from noise as a function of feature co-occurrence proba-
bilities within subsets of items. In our current studies we show that
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coherence can quickly govern representation building in a novel
domain, in both humans and neural network models, and that this
learning can reflect the structure within a category. Increased coher-
ence within the Modular category input drove similarity of feature
representations within modules and differentiation between mod-
ules, which led to better overall understanding of the Modular cate-
gory in the models and in people.

There is a close relationship between coherent covariation and
hierarchical organization which deserves some further attention.
Saxe et al. (2019) explain that: “coherent categories consist of
large subsets of items possessing, with high probability, large sub-
sets of features that tend not to co-occur in other categories.” A hier-
archy, on the other hand, is an explicit structural representation that
describes a layered organization of categories, superordinate catego-
ries, subordinate categories, and so on. The concept of coherence is
more general and allows for more fuzziness than a strict hierarchy
would allow, but categories with high coherence can also be
described by a hierarchy. Indeed, the Rogers and McClelland
(2004) neural network model of semantic learning leveraged coher-
ent covariation among semantic features to learn representations that
reflected the hierarchical organization of semantic space. While our
neural network model could represent the structure of Modular cat-
egories without explicit hierarchical representations, our results
could be recast as an effect of hierarchical structure on learning.
The two categories can also be described as differing in “complex-
ity,” with the peripheral Modular components being simpler than the
periphery of the Random or Lattice categories. Complexity, hierar-
chy, and coherent covariation usually track closely, but can in theory
be disentangled, and future work could explore their unique impacts
on category learning.

The potential role of additional cognitive factors in this structure
learning process also remains to be explored. For example, it is pos-
sible that distinct category structures result in different patterns of
attentional allocation across features, influencing how categories
are learned. While our neural network model mirrored human per-
formance simply through direct sensitivity to feature structure and
without an attentional mechanism, it will be important for future
work to investigate the role of attention and other possible mediating
factors in these effects of structure on learning. Another open ques-
tion is how internal category structure influences categorization.
While our own experiments used inference tasks to boost within-
category learning, our results generate predictions regarding classi-
fication tasks. Specifically, since Modular structures promote the
efficient clustering and differentiation of feature representations,
we might predict increased classification performance between
two Modular categories, as opposed to two non-Modular categories.
Further exploring the influence of internal category structure on
inference as well as classification performance will be a fruitful
direction of future work.

Implications for Models of Category Learning

A crucial question in theories of conceptual and category knowl-
edge relates to the content and structure of the underlying represen-
tations. What information is contained within a category
representation, and how is it stored? Broadly speaking, the main the-
oretical divide is between exemplar and abstraction theories of rep-
resentation. In exemplar theories, a category representation consists
of stored exemplar traces. In abstraction theories, a category is

represented in terms of an abstracted, centralized category represen-
tation in which information from individual exemplars has been inte-
grated. The most well-known abstraction theories claim that these
centralized representations are “prototypes,” which reflect the cate-
gory’s central tendency. When exemplar and prototype models are
compared, especially in the context of feature correlation learning,
exemplar theories receive more empirical and computational support
(e.g., Medin & Schaffer, 1978). However, the range of abstraction
models is vast. Whereas prototype models abstract and encode a cat-
egory’s central tendency, other models abstract and encode a cate-
gory’s feature correlations, thus retaining its feature-based
structure. This flavor of abstraction model is instantiated in neural
network models such as the one described by Rumelhart &
McClelland, in which feature associations are encoded via the fine-
tuning of weights during gradient descent learning. These relational
abstraction models are predicted to behave similarly to exemplar-
style models in the context of feature correlation learning (Medin
& Schaffer, 1978). However, they differ in their assumptions of
how feature correlation sensitivity arises: relational abstraction mod-
els abstract feature correlations during encoding and they are embed-
ded within the category representation; exemplar models do not store
feature correlations but rather abstract them at the time of retrieval.
Dissociating the predictions generated by these two disparate theo-
ries of category representation is theoretically and empirically diffi-
cult (Barsalou, 1990).

Here our aim was to provide a relational abstraction model of cat-
egory learning that can explain patterns of category structure learn-
ing in humans. Relational abstraction models, like the neural
network model used here, encode feature correlations into the
learned category representations. If feature correlations are embed-
ded into the new category representation during encoding, this
feature-based structure will likely influence subsequent processing.
We incorporated these hypotheses into a design such that we
could observe whether correlated structure in one set of features
influenced learning of a completely different set of features, and pre-
dicted that both humans and a neural network model would reveal
such an influence. Indeed, across three behavioral experiments we
observed increased accuracy for core features in categories contain-
ing increased clustering of correlated features in their periphery. A
neural network model revealed similar patterns of behavior. Taken
together, these empirical and computational results show that a rela-
tional abstraction model can indeed capture this kind of human cat-
egory learning behavior. While we cannot claim that this model
outperforms exemplar-style models based on GCM simulations
applied to Experiment 1, Experiment 3 provides intriguing evidence
that, at least in some cases, a relational abstraction model may indeed
outperform exemplar models in the context of category structure
learning (see the online supplemental materials).

It is important to note that a relational abstraction theory of cate-
gory representation need not be implemented in a neural network
model, and not all neural network models instantiate a relational
abstraction theory. Addressing the former point, early theorists
supporting relational abstraction models argued that, during cate-
gory learning, separate memory representations are created for all
individual properties and property conjunctions (Hayes-Roth &
Hayes-Roth, 1977). Much like how a modal prototype model tracks
the frequency of individual features, the “property-set model” tracks
the frequency of feature combinations. Feature associations are expli-
citly encoded and no network organization is invoked. Conversely,
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neural network models can be designed to implement a wide range
of theoretical models (Gluck & Bower, 1988). What the model rep-
resents is determined by its architecture and given inputs, and vari-
ous decisions can result in an exemplar or abstraction model of
category representation. Our current model’s ability to reflect
human category learning lies in its use of distributed representa-
tions—its input nodes correspond to localist feature units, but their
weighted connections to the hidden layer result in a distributed
code in which any extractable, useful information can be represented
(e.g., features, categories, feature associations).

Exemplar-style network models do not share all of these charac-
teristics. For example, REMERGE is a neural network model built
to demonstrate how inference and categorization can be accom-
plished by orthogonalized neural codes in the hippocampus
(Kumaran & McClelland, 2012). Its architecture contains a layer
of localist feature units and a layer of localist conjunctive units;
recurrent processing between these layers enables co-activation of
multiple conjunctive units that code for indirectly related experi-
ences. In the case of categorization, each training exemplar is
assigned one conjunctive unit, and the features of individual test
items will activate these units in proportion to their featural overlap
(i.e., neither feature nor category representations are distributed).
The retrieval dynamics in REMERGE carry out a function closely
analogous to the similarity-based computation implemented in
GCM (Kumaran & McClelland, 2012, Appendix). Indeed, the
model shares the core characteristic of GCM: storing individual
exemplars separately.

As another example, ALCOVE is a neural network model that pairs
an exemplar theory of category representation with an error-driven
learning mechanism (Kruschke, 1992). Similar to REMERGE, both
features and categories are represented in localist rather than distribu-
ted codes. ALCOVE is also similar to GCM, but error-driven weight
changes between feature units and exemplar units allows for increased
attention to specific feature dimensions, and weight changes between
exemplar and category units enables exemplars to differentially con-
tribute to category decisions. When the attention-learning rate is
high, ALCOVE is sensitive to correlated feature dimensions, consis-
tent with our own GCM simulations (online supplemental materials).
Additionally, ALCOVE’s error-driven learning rule enables it to
model forms of base-rate neglect in humans that non-network context
models cannot (Nosofsky et al., 1992). However, the architecture of
this model does not enable the encoding of feature associations, pre-
serving an exemplar-based representational system.

Pushing away from explicit exemplar-style representations,
SUSTAIN is another neural network model of category learning con-
taining a powerful dimensional attention mechanism. It does not rep-
resent exemplars in a distributed code, but does not explicitly store
representations of individual items either. Rather, SUSTAIN repre-
sents categories as “clusters” within a multidimensional feature
space, with new clusters formed only when existing clusters lead to
large prediction errors. Love et al. (2004) specifically intended to cap-
ture category substructure, and SUSTAIN would thus likely be able to
capture the peripheral structures of our Modular and non-Modular cat-
egories. Like ALCOVE, attentional tuning within each dimension
results in sensitivity to correlated feature dimensions, which can influ-
ence category decisions. However, SUSTAIN’s ability to predict our
Modular core benefit is unclear. Love et al. (2004) report that
SUSTAIN prefers intercorrelated, versus non-intercorrelated, dimen-
sions, but once the model learns one cluster of correlated features it

finds it more difficult to learn another. This might lead to easier learn-
ing of core features in the non-Modular relative to Modular categories,
the opposite of what we observed.

Many other neural network-style models can be considered to fall
within the relational abstraction class of category learning models, and
these would likely reflect our observed patterns of human behavior.
The neural network model we employed here is only one instance
of a multilayer network paired with error-driven learning mechanisms.
For example, the divergent autoencoder (DIVA) model is a feed-
forward network employing error-driven learning and feature input
nodes—its architecture enables the encoding of feature associations
and would therefore fall within the relational abstraction class of cat-
egory models (Kurtz, 2007). Here our general claim is that humans
abstract and encode feature associations during category learning,
and therefore category learning models that also encode feature asso-
ciations should reflect human learning patterns. This argument applies
to multilayer neural network models such as McClelland and
Rumelhart (1985), Rogers and McClelland (2004), and Hinton
(1986), as well as DIVA (Kurtz, 2007). We believe the empirically
observed benefits for Modular categories likely require the kind of dis-
tributed representations that emerge in these models. This has impli-
cations for theories and models of category knowledge as well as
the neural representations that we might expect to emerge during cat-
egory learning. Further exploration of the computational landscape
will be able to further reveal which learning and representational
assumptions best explain human category learning and semantic
inference.

Potential Neural Substrates

Based on prior neuroimaging investigations of SL, structure learn-
ing, and category learning, we believe it is likely that our effects are
underpinned by the rapid development of distributed representations
in the hippocampus. There is a growing literature indicating that the
hippocampus tracks information across experiences in the service of
category learning (Mack et al., 2018). Evidence from neuroimaging
and studies with hippocampal amnesics similarly suggests that the
hippocampus is recruited for rapid SL (Bornstein & Daw, 2012;
Covington et al., 2018; Harrison et al., 2006; Schapiro et al.,
2012, 2014, 2016; Strange et al., 2005; Turk-Browne et al., 2009,
2010), building overlapping representations that reflect statistically
strong associations between stimuli (Schapiro et al., 2012). This
ability to extract commonalities across experiences is in tension
with the original CLS theory, which posited that the hippocampus
houses sparse, separated neural patterns which are only subsequently
consolidated as distributed representations in neocortex (McClelland
et al., 1995). However, we have previously proposed that the hippo-
campus itself contains complementary learning systems due to dif-
ferent representational formats in subfields CA1 versus CA3 and
Dentate Gyrus: A neural network model incorporating properties
of these subfields demonstrates how sparse, separated patterns in
CA3 and Dentate Gyrus that support episodic memory can coexist
with distributed representations in CA1 that underlie rapid statistical
learning (Schapiro et al., 2017). Our current model simulations sug-
gest that distributed representations may be necessary to explain our
category learning effects, leading us to hypothesize that these struc-
tured representations might emerge in the CA1 subfield of the hippo-
campus. Indeed, the models used here are functionally equivalent to
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the monosynaptic pathway of our hippocampus model—the path-
way connecting entorhinal cortex with region CAl.

Hippocampal involvement in the rapid extraction of category
structure would be consistent with our previous finding that the hip-
pocampus is sensitive to graph community structure. Schapiro et al.
(2016) exposed humans to a sequence of abstract visual stimuli
whose order was determined by random walks across a modular
graph. Each module, or community, corresponded to a group of stim-
uli that appeared in close temporal proximity within the experiment.
After exposure, multivoxel hippocampal patterns evoked by stimuli
within the same community were more similar than those from dif-
ferent communities, revealing sensitivity to high-level graph struc-
ture. Additional evidence of structure learning and representation
in the hippocampus comes from research on “cognitive maps.”
Tolman (1948) introduced cognitive maps as abstract, domain-
general structures that represent relations between entities. These
structured representations are powerful because they can enable
inference of relationships between entities that have not been directly
observed, leading to generalization and improved learning perfor-
mance (Behrens et al., 2018; Whittington et al., 2020). Cognitive
maps are also a powerful theoretical framework because they can
be used to represent relations between varied kinds of entities,
such as places (Epstein et al., 2017; Hafting et al., 2005; Javadi et
al., 2017; Killian & Buffalo, 2018; O’Keefe & Nadel, 1978;
Stachenfeld et al., 2017), objects (Mark et al., 2020; Whittington
etal., 2020), people (Park et al., 2021; Tavares et al., 2015), concepts
(Constantinescu et al., 2016), events (Hassabis et al., 2007), and
other abstract spaces (Behrens et al., 2018; Franklin & Frank,
2018; Schuck et al., 2016; Theves et al., 2019). The medial temporal
lobe and hippocampus specifically have been implicated in repre-
senting or otherwise processing structural elements of these cogni-
tive maps (Constantinescu et al., 2016; Hafting et al., 2005;
Hassabis et al., 2007; Javadi et al., 2017; Killian & Buffalo, 2018;
Morton et al., 2020; O’Keefe & Nadel, 1978; Park et al., 2021;
Stachenfeld et al., 2017; Tavares et al., 2015; Theves et al., 2019).
Evidence thus suggests that graph or map-like structures rely at
least in part on hippocampal representations, reinforcing the hypoth-
esis that hippocampal representations underlie our observed effects
of graph structure on category learning.

While the rapid learning capabilities of the hippocampus would
facilitate structure learning in novel domains like the ones employed
here, we would expect a consolidated form of this knowledge to rely
primarily on neocortical areas that are known to support long-term
conceptual knowledge, like the anterior temporal lobes (Patterson
et al., 2007; Peelen & Caramazza, 2012; Ralph et al., 2010, 2017).

Relational Structure Within Real-World Concepts

We have demonstrated how correlational structure within a cate-
gory’s features—above and beyond the identity of the features them-
selves—can influence category learning more broadly. We interpret
these findings to be consistent with a relational abstraction theory of
category representation, in which feature correlations are encoded
into the category representation itself, as opposed to an exemplar
theory, in which a category is represented as the set of distinct exem-
plar traces. Considering theories of real-world conceptual knowl-
edge, abstraction theories of representation are arguably more
plausible than exemplar theories of representation; in fact, Murphy
(2016) argues that an exemplar theory of concepts has not yet

been put forward. An exemplar theory of concepts would have trou-
ble representing hierarchical semantic knowledge (e.g., that a lady-
bug is a beetle, which is an animal, which is a living thing) as
well as representing knowledge that is not tied to experience with
exemplars (e.g., that whales have four-chambered hearts; Murphy,
2016). Furthermore, even if it were plausible to represent concrete
or “entity” concepts (e.g., ladybug, apple) in terms of exemplars,
it is unclear how that would work in the context of intangible con-
cepts (e.g., truth, democracy).

Relational abstraction theories of representation are also consis-
tent with theories of relational semantic knowledge. While some
entity concepts can more easily be defined in terms of particular fea-
tures (e.g., ladybug), other “relational” concepts are more easily
defined in terms of particular relations between entities in the
world (e.g., bridge, friend; Asmuth & Gentner, 2017; Gentner &
Kurtz, 2005). The meaning of a relational concept comprises a cer-
tain relation between elements, rather than specific sensorimotor fea-
tures. For example, a bridge is a structure connecting two entities—
shape, material, and size features can be irrelevant for categorization.
Indeed, a bridge might not be a physical object at all, but rather an
abstract connection between two separate ideas. Relationality has
consequences for how concepts are processed. For example, it is eas-
ier to imagine an ideal example of a relational concept relative to an
entity concept (Goldwater et al., 2011), and relational concepts may
be more semantically mutable across contexts than entity concepts
(Asmuth & Gentner, 2017). Further, relational structure within dif-
ferent concepts or domains drives analogical reasoning (Gentner et
al., 1993; Holyoak, 2012). Relationality is associated with concep-
tual abstractness, since both terms characterize concepts that are per-
haps more appropriately or efficiently represented in terms of
intangible, rather than concrete, features.

Similar ideas have been explored in the context of category learn-
ing. Feature relations play an important role in behavioral studies of
“category coherence” and “abstract coherent categories” (Erickson
et al., 2005; Murphy & Medin, 1985; Rehder & Ross, 2001;
Spalding & Murphy, 1996; Wisniewski, 1995). Rather than referring
to statistical regularities between any features, this body of work
considers “coherence” to reflect known semantic, thematic, or causal
relations between features that participants bring with them into an
experimental setting. In other words, coherent categories are those
whose feature combinations make sense in light of prior knowledge
(e.g., has wings, can fly). Prior knowledge can affect interpretations
of features during category processing and learning (Spalding
& Murphy, 1996; Spalding & Ross, 2000; Wisniewski & Medin,
1994) and can make it easier to integrate features during category
learning (Murphy & Allopenna, 1994). Incidentally, inference
tasks promote learning of abstract coherent categories (Erickson et
al., 2005) as well as relational discovery (Goldwater et al., 2018).
Furthermore, similarity-based category learning models (e.g., exem-
plar and prototype models) cannot account for the acquisition of
abstract, coherent categories (Erickson et al., 2005). In sum, it is eas-
ier to learn a new category when it contains sets of features that are
known to be associated, or correlated, with each other in the real
world. Correlated features in turn play an important role in relational
category learning (Goldwater et al., 2018).

The novel insects learned in our current experiments did not contain
rich semantic, thematic, and causal relations—indeed, our feature
combinations could be considered incoherent with respect to prior
knowledge (e.g., antennae, claws). The structure embedded within
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each of our insect categories relied on feature correlations that were not
imported from the real world but were learned online in the context of
the experiment. Nevertheless, we replicated the finding that feature
correlations benefit learning. While this is consistent with the category
learning research summarized above, we need not invoke prior knowl-
edge to explain our observed effect. Feature correlations and category
coherence benefit learning even in the absence of prior knowledge.
Our findings thus suggest how, without any prior semantic knowl-
edge, feature correlations can aid concept learning de novo and may
provide the scaffolding for relational meaning. More generally, repre-
senting concepts in terms of specific features as well as feature rela-
tions—and understanding how these feature relations are learned—
may provide traction on understanding “relational” or “abstract” con-
cepts that tend to be empirically elusive.

Representation of Abstract Structure

Our behavioral data reveal an effect of category structure on cat-
egory learning, and our simulations suggest that the encoding of
feature-based structure underlies this effect. However, we do not
know whether the representations built during category learning
are representations of structure per se. The effects of graph structure
we observe here might be a result of feature-, exemplar-, or category-
specific representations becoming more or less similar to each other
during learning depending on their patterns of co-occurrence.
Indeed, this is how the neural network models work. Relatedly,
Saxe et al. (2019) offer a mathematical explanation of how the clus-
tering or coherence of an environment influences learning in the con-
text of a deep linear network model. It is possible, though, that
category learning could sometimes result in, or depend on,
abstracted representations of structure that exist independently
from the feature representations themselves.

One influential framework that invokes explicit abstract structural
representations is the structured statistical framework of Kemp,
Tenenbaum, and colleagues (Kemp & Tenenbaum, 2008, 2009;
Tenenbaum et al., 2011). This approach pairs representations of struc-
tural forms (e.g., hierarchical trees, directed graphs) with a domain-
general statistical inference mechanism to model forms of inductive
reasoning such as property induction. In these models, background
knowledge of a domain is captured in an appropriate structural form
in addition to a stochastic process that reflects how properties are likely
to be distributed within the domain. For example, biological proper-
ties are best represented in a hierarchical tree paired with a “diffusion”
process, whereas disease properties are best represented in a directed
graph paired with a “transmission” process (Kemp & Tenenbaum,
2009). The combined structure and stochastic process generates a
prior over which Bayesian statistical inference is performed. It is
argued that the same statistical inference engine used for property
inference can be used to learn the correct structure for a given domain
(Kemp & Tenenbaum, 2008). In the context of our experiments, the
structural statistical model would be tasked with (a) finding optimal
structural forms for the Modular and non-Modular categories, (b)
choosing the appropriate stochastic process(es), and (c) performing
statistical inference over these priors and the observed category exem-
plars. However, it is important to note that our structural classifications
(i.e., Modular, Random, Lattice; Figure 1) reflect the distances
between features rather than the distances between exemplars; the
structured statistical framework operates on exemplar-based struc-
tures. For example, the feature-based structure of our Modular

categories has three clusters (i.e., core, mod1, mod2), but if the struc-
ture was redrawn based on exemplar distances it would only have two
clusters (i.e., exemplars from modl, exemplars from mod2). The
structured statistical model would undoubtedly be able to learn this
two-cluster structure. However, since core features are always present
in all exemplars in all category structures—and thus do not relate to
the exemplar-based structural forms—it seems unlikely that the statis-
tical inference mechanism would more easily learn the core features in
our Modular versus non-Modular categories. This approach could
potentially be adapted, however, to address the phenomena about
internal feature structure observed here.

If abstract representations of structure do emerge during learning,
they can be empirically tested using a “structure transfer” paradigm.
Mark et al. (2020) implemented such a paradigm to determine
whether representations of structure are formed and whether they
aid future learning. The researchers exposed participants to an envi-
ronment defined either by a lattice or modular graph structure; visual
images of real-world objects were assigned to different graph nodes,
and the presence of graph edges indicated a possible temporal tran-
sition between these objects. After learning this initial environment,
participants were introduced to a second environment structured
according to the same modular graph but defined by a completely
new set of visual objects. The researchers observed that participants
who were initially exposed to a modular environment found it easier
to learn a second modular environment, even though the environ-
ments had no visual objects in common. This suggests that partici-
pants not only learned the structure of the environment, but
transformed it away from the environment’s specific features and
represented it in an abstract form that could then be applied to future
learning environments (Mark et al., 2020). In the category learning
context, future work could test whether learning a category charac-
terized by a certain graph structure makes it easier to learn a second
category with the same structure, even when the categories share no
features in common. This would help clarify to what extent the brain
learns representations of the category structure separate from the
associations between particular category features.

Conclusions

We presented three human behavioral experiments and corre-
sponding model simulations to test the influence of category struc-
ture on category learning. Our results provided support for an
abstraction theory of representation in which feature correlations
are encoded into the learned representation. We also found that cat-
egory structure influenced how easily important category features
were learned, and specifically that humans find it easier to learn cat-
egories containing sets of reliably co-occurring features. It is likely
that clusters of reliably co-occurring features benefit structure learn-
ing more generally and that this learning is underpinned by rapidly
formed distributed representations.
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